forked from moreo/QuaPy
mlq
This commit is contained in:
parent
60b6fa3c12
commit
c6de5a043d
MultiLabel
|
@ -2,7 +2,8 @@ from sklearn.calibration import CalibratedClassifierCV
|
|||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.multioutput import ClassifierChain
|
||||
from tqdm import tqdm
|
||||
|
||||
from skmultilearn.dataset import load_dataset
|
||||
from scipy.sparse import csr_matrix
|
||||
import quapy as qp
|
||||
from MultiLabel.mlclassification import MultilabelStackedClassifier
|
||||
from MultiLabel.mldata import MultilabelledCollection
|
||||
|
@ -13,7 +14,7 @@ from method.aggregative import PACC, CC, EMQ, PCC, ACC, HDy
|
|||
import numpy as np
|
||||
from data.dataset import Dataset
|
||||
from mlevaluation import ml_natural_prevalence_evaluation, ml_artificial_prevalence_evaluation
|
||||
|
||||
import sys
|
||||
|
||||
def cls():
|
||||
# return LinearSVC()
|
||||
|
@ -31,24 +32,24 @@ n_samples = 5000
|
|||
|
||||
|
||||
def models():
|
||||
# yield 'NaiveCC', MultilabelNaiveAggregativeQuantifier(CC(cls()))
|
||||
# yield 'NaivePCC', MultilabelNaiveAggregativeQuantifier(PCC(cls()))
|
||||
# yield 'NaiveACC', MultilabelNaiveAggregativeQuantifier(ACC(cls()))
|
||||
# yield 'NaivePACC', MultilabelNaiveAggregativeQuantifier(PACC(cls()))
|
||||
yield 'NaiveCC', MultilabelNaiveAggregativeQuantifier(CC(cls()))
|
||||
yield 'NaivePCC', MultilabelNaiveAggregativeQuantifier(PCC(cls()))
|
||||
yield 'NaiveACC', MultilabelNaiveAggregativeQuantifier(ACC(cls()))
|
||||
yield 'NaivePACC', MultilabelNaiveAggregativeQuantifier(PACC(cls()))
|
||||
# yield 'EMQ', MultilabelQuantifier(EMQ(calibratedCls()))
|
||||
# yield 'StackCC', MLCC(MultilabelStackedClassifier(cls()))
|
||||
# yield 'StackPCC', MLPCC(MultilabelStackedClassifier(cls()))
|
||||
# yield 'StackACC', MLACC(MultilabelStackedClassifier(cls()))
|
||||
# yield 'StackPACC', MLPACC(MultilabelStackedClassifier(cls()))
|
||||
yield 'StackCC', MLCC(MultilabelStackedClassifier(cls()))
|
||||
yield 'StackPCC', MLPCC(MultilabelStackedClassifier(cls()))
|
||||
yield 'StackACC', MLACC(MultilabelStackedClassifier(cls()))
|
||||
yield 'StackPACC', MLPACC(MultilabelStackedClassifier(cls()))
|
||||
# yield 'ChainCC', MLCC(ClassifierChain(cls(), cv=None, order='random'))
|
||||
# yield 'ChainPCC', MLPCC(ClassifierChain(cls(), cv=None, order='random'))
|
||||
# yield 'ChainACC', MLACC(ClassifierChain(cls(), cv=None, order='random'))
|
||||
# yield 'ChainPACC', MLPACC(ClassifierChain(cls(), cv=None, order='random'))
|
||||
common={'sample_size':sample_size, 'n_samples': n_samples, 'norm': True, 'means':False, 'stds':False, 'regression':'svr'}
|
||||
# yield 'MRQ-CC', MLRegressionQuantification(MultilabelNaiveQuantifier(CC(cls())), **common)
|
||||
# yield 'MRQ-PCC', MLRegressionQuantification(MultilabelNaiveQuantifier(PCC(cls())), **common)
|
||||
# yield 'MRQ-ACC', MLRegressionQuantification(MultilabelNaiveQuantifier(ACC(cls())), **common)
|
||||
# yield 'MRQ-PACC', MLRegressionQuantification(MultilabelNaiveQuantifier(PACC(cls())), **common)
|
||||
yield 'MRQ-CC', MLRegressionQuantification(MultilabelNaiveQuantifier(CC(cls())), **common)
|
||||
yield 'MRQ-PCC', MLRegressionQuantification(MultilabelNaiveQuantifier(PCC(cls())), **common)
|
||||
yield 'MRQ-ACC', MLRegressionQuantification(MultilabelNaiveQuantifier(ACC(cls())), **common)
|
||||
yield 'MRQ-PACC', MLRegressionQuantification(MultilabelNaiveQuantifier(PACC(cls())), **common)
|
||||
# yield 'MRQ-StackCC', MLRegressionQuantification(MLCC(MultilabelStackedClassifier(cls())), **common)
|
||||
# yield 'MRQ-StackPCC', MLRegressionQuantification(MLPCC(MultilabelStackedClassifier(cls())), **common)
|
||||
# yield 'MRQ-StackACC', MLRegressionQuantification(MLACC(MultilabelStackedClassifier(cls())), **common)
|
||||
|
@ -63,19 +64,36 @@ def models():
|
|||
# yield 'MRQ-ChainPACC', MLRegressionQuantification(MLPACC(ClassifierChain(cls())), **common)
|
||||
|
||||
|
||||
dataset = 'reuters21578'
|
||||
picklepath = '/home/moreo/word-class-embeddings/pickles'
|
||||
data = Dataset.load(dataset, pickle_path=f'{picklepath}/{dataset}.pickle')
|
||||
|
||||
Xtr, Xte = data.vectorize()
|
||||
ytr = data.devel_labelmatrix.todense().getA()
|
||||
yte = data.test_labelmatrix.todense().getA()
|
||||
# dataset = 'reuters21578'
|
||||
# picklepath = '/home/moreo/word-class-embeddings/pickles'
|
||||
# data = Dataset.load(dataset, pickle_path=f'{picklepath}/{dataset}.pickle')
|
||||
# Xtr, Xte = data.vectorize()
|
||||
# ytr = data.devel_labelmatrix.todense().getA()
|
||||
# yte = data.test_labelmatrix.todense().getA()
|
||||
|
||||
# remove categories with < 10 training documents
|
||||
to_keep = np.logical_and(ytr.sum(axis=0)>=50, yte.sum(axis=0)>=50)
|
||||
ytr = ytr[:, to_keep]
|
||||
yte = yte[:, to_keep]
|
||||
print(f'num categories = {ytr.shape[1]}')
|
||||
# to_keep = np.logical_and(ytr.sum(axis=0)>=50, yte.sum(axis=0)>=50)
|
||||
# ytr = ytr[:, to_keep]
|
||||
# yte = yte[:, to_keep]
|
||||
# print(f'num categories = {ytr.shape[1]}')
|
||||
|
||||
|
||||
dataset = 'birds'
|
||||
|
||||
Xtr, ytr, feature_names, label_names = load_dataset(dataset, 'train')
|
||||
Xte, yte, _, _ = load_dataset(dataset, 'test')
|
||||
print(f'n-labels = {len(label_names)}')
|
||||
|
||||
Xtr = csr_matrix(Xtr)
|
||||
Xte = csr_matrix(Xte)
|
||||
|
||||
ytr = ytr.todense().getA()
|
||||
yte = yte.todense().getA()
|
||||
|
||||
|
||||
# print((np.abs(np.corrcoef(ytr, rowvar=False))>0.1).sum())
|
||||
# sys.exit(0)
|
||||
|
||||
|
||||
train = MultilabelledCollection(Xtr, ytr)
|
||||
test = MultilabelledCollection(Xte, yte)
|
|
@ -186,6 +186,7 @@ class MLRegressionQuantification:
|
|||
# self.norm = StandardScaler()
|
||||
self.means = means
|
||||
self.stds = stds
|
||||
# self.covs = covs
|
||||
|
||||
def _prepare_arrays(self, Xs, ys, samples_mean, samples_std):
|
||||
Xs = np.asarray(Xs)
|
||||
|
@ -196,6 +197,8 @@ class MLRegressionQuantification:
|
|||
if self.stds:
|
||||
samples_std = np.asarray(samples_std)
|
||||
Xs = np.hstack([Xs, samples_std])
|
||||
# if self.covs:
|
||||
|
||||
return Xs, ys
|
||||
|
||||
def generate_samples_npp(self, val):
|
||||
|
@ -257,3 +260,6 @@ class MLRegressionQuantification:
|
|||
adjusted = adjusted.flatten()
|
||||
neg_prevs = 1-adjusted
|
||||
return np.asarray([neg_prevs, adjusted]).T
|
||||
|
||||
|
||||
# class
|
Loading…
Reference in New Issue