diff --git a/distribution_matching/commons.py b/distribution_matching/commons.py index 716768e..6d1f1a2 100644 --- a/distribution_matching/commons.py +++ b/distribution_matching/commons.py @@ -6,9 +6,14 @@ from distribution_matching.method_kdey_closed_efficient_correct import KDEyclose from quapy.method.aggregative import EMQ, CC, PCC, DistributionMatching, PACC, HDy, OneVsAllAggregative, ACC from distribution_matching.method_dirichlety import DIRy from sklearn.linear_model import LogisticRegression -from method_kdey_closed_efficient import KDEyclosed_efficient +from distribution_matching.method_kdey_closed_efficient import KDEyclosed_efficient + +# the full list of methods tested in the paper (reported in the appendix) +METHODS = ['ACC', 'PACC', 'HDy-OvA', 'DM-T', 'DM-HD', 'KDEy-HD', 'DM-CS', 'KDEy-CS', 'DIR', 'EMQ', 'EMQ-BCTS', 'KDEy-ML'] + +# uncomment this other list for the methods shown in the body of the paper (the other methods are not comparable in performance) +#METHODS = ['PACC', 'DM-T', 'DM-HD', 'KDEy-HD', 'DM-CS', 'KDEy-CS', 'EMQ', 'KDEy-ML'] -METHODS = ['ACC', 'PACC', 'HDy-OvA', 'DM-T', 'DM-HD', 'KDEy-DMhd4', 'DM-CS', 'KDEy-closed++', 'DIR', 'EMQ', 'KDEy-ML'] #['ACC', 'PACC', 'HDy-OvA', 'DIR', 'DM', 'KDEy-DMhd3', 'KDEy-closed++', 'EMQ', 'KDEy-ML'] #, 'KDEy-DMhd2'] #, 'KDEy-DMhd2', 'DM-HD'] 'KDEy-DMjs', 'KDEy-DM', 'KDEy-ML+', 'KDEy-DMhd3+', 'EMQ-C', BIN_METHODS = [x.replace('-OvA', '') for x in METHODS] @@ -17,6 +22,12 @@ hyper_LR = { 'classifier__class_weight': ['balanced', None] } +hyper_kde = { + 'bandwidth': np.linspace(0.01, 0.2, 20) +} + +nbins_range = [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 64] + def new_method(method, **lr_kwargs): lr = LogisticRegression(**lr_kwargs) @@ -33,33 +44,22 @@ def new_method(method, **lr_kwargs): elif method == 'PACC': param_grid = hyper_LR quantifier = PACC(lr) - elif method == 'KDEy-ML': - method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)} - param_grid = {**method_params, **hyper_LR} - quantifier = KDEy(lr, target='max_likelihood', val_split=10) - elif method == 'KDEy-closed': - method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)} - param_grid = {**method_params, **hyper_LR} - quantifier = KDEyclosed(lr, val_split=10) - elif method == 'KDEy-closed+': - method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)} - param_grid = {**method_params, **hyper_LR} - quantifier = KDEyclosed_efficient(lr, val_split=10) - elif method == 'KDEy-closed++': - method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)} - param_grid = {**method_params, **hyper_LR} + elif method in ['KDEy-HD']: + param_grid = {**hyper_kde, **hyper_LR} + quantifier = KDEy(lr, target='min_divergence', divergence='HD', montecarlo_trials=10000, val_split=10) + elif method == 'KDEy-CS': + param_grid = {**hyper_kde, **hyper_LR} quantifier = KDEyclosed_efficient_corr(lr, val_split=10) - elif method in ['KDEy-DM']: - method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)} - param_grid = {**method_params, **hyper_LR} - quantifier = KDEy(lr, target='min_divergence', divergence='l2', montecarlo_trials=5000, val_split=10) + elif method == 'KDEy-ML': + param_grid = {**hyper_kde, **hyper_LR} + quantifier = KDEy(lr, target='max_likelihood', val_split=10) elif method == 'DIR': param_grid = hyper_LR quantifier = DIRy(lr) elif method == 'EMQ': param_grid = hyper_LR quantifier = EMQ(lr) - elif method == 'EMQ-C': + elif method == 'EMQ-BCTS': method_params = {'exact_train_prev': [False], 'recalib': ['bcts']} param_grid = {**method_params, **hyper_LR} quantifier = EMQ(lr) @@ -69,17 +69,9 @@ def new_method(method, **lr_kwargs): elif method == 'HDy-OvA': param_grid = {'binary_quantifier__' + key: val for key, val in hyper_LR.items()} quantifier = OneVsAllAggregative(HDy(lr)) - elif method == 'DM': - method_params = { - 'nbins': [4,8,16,32], - 'val_split': [10, 0.4], - 'divergence': ['HD', 'topsoe', 'l2'] - } - param_grid = {**method_params, **hyper_LR} - quantifier = DistributionMatching(lr) elif method == 'DM-T': method_params = { - 'nbins': [2,3,4,5,6,7,8,9,10,12,14,16,18,20,22,24,26,28,30,32,64], + 'nbins': nbins_range, 'val_split': [10], 'divergence': ['topsoe'] } @@ -87,7 +79,7 @@ def new_method(method, **lr_kwargs): quantifier = DistributionMatching(lr) elif method == 'DM-HD': method_params = { - 'nbins': [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 64], + 'nbins': nbins_range, 'val_split': [10], 'divergence': ['HD'] } @@ -95,55 +87,12 @@ def new_method(method, **lr_kwargs): quantifier = DistributionMatching(lr) elif method == 'DM-CS': method_params = { - 'nbins': [2,3,4,5,6,7,8,9,10,12,14,16,18,20,22,24,26,28,30,32,64], + 'nbins': nbins_range, 'val_split': [10], 'divergence': ['CS'] } param_grid = {**method_params, **hyper_LR} quantifier = DistributionMatching(lr) - - # experimental - elif method in ['KDEy-DMkld']: - method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)} - param_grid = {**method_params, **hyper_LR} - quantifier = KDEy(lr, target='min_divergence', divergence='KLD', montecarlo_trials=5000, val_split=10) - # elif method in ['KDEy-DMhd']: - # The code to reproduce this run is commented in the min_divergence target, I think it was incorrect... - # method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)} - # param_grid = {**method_params, **hyper_LR} - # quantifier = KDEy(lr, target='min_divergence', divergence='HD', montecarlo_trials=5000, val_split=10) - elif method in ['KDEy-DMhd2']: - method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)} - param_grid = {**method_params, **hyper_LR} - quantifier = KDEy(lr, target='min_divergence_uniform', divergence='HD', montecarlo_trials=5000, val_split=10) - elif method in ['KDEy-DMjs']: - method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)} - param_grid = {**method_params, **hyper_LR} - quantifier = KDEy(lr, target='min_divergence_uniform', divergence='JS', montecarlo_trials=5000, val_split=10) - elif method in ['KDEy-DMhd3']: - # I have realized that there was an error. I am sampling from the validation distribution (V) and not from the - # test distribution (T) just because the validation can be sampled in fit only once and pre-computed densities - # can be stored. This means that the reference distribution is V and not T. Then I have found that an - # f-divergence is defined as D(p||q) \int_{R^n}q(x)f(p(x)/q(x))dx = E_{x~q}[f(p(x)/q(x))], so if I am sampling - # V then I am computing D(T||V) (and not D(V||T) as I thought). - method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)} - param_grid = {**method_params, **hyper_LR} - quantifier = KDEy(lr, target='min_divergence', divergence='HD', montecarlo_trials=5000, val_split=10) - elif method in ['KDEy-DMhd4']: - # This is the new version in which we apply importance sampling, i.e., we compute: - # D(p_a||q) = 1/N sum_x f(p(x)/q(x)) * (q(x)/r(x)) - # where x ~iid r, with r = p_u, and u = (1/n, 1/n, ..., 1/n) the uniform vector - method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)} - param_grid = {**method_params, **hyper_LR} - quantifier = KDEy(lr, target='min_divergence', divergence='HD', montecarlo_trials=10000, val_split=10) - elif method == 'DM-HD': - method_params = { - 'nbins': [4,8,16,32], - 'val_split': [10, 0.4], - } - param_grid = {**method_params, **hyper_LR} - quantifier = DistributionMatching(lr, divergence='HD') - else: raise NotImplementedError('unknown method', method) diff --git a/distribution_matching/figures/histograms_density_plot.py b/distribution_matching/figures/histograms_density_plot.py index f4d59bd..72887c6 100644 --- a/distribution_matching/figures/histograms_density_plot.py +++ b/distribution_matching/figures/histograms_density_plot.py @@ -53,7 +53,7 @@ for i, post_set in enumerate([post_c1, post_c2, post_c3, post_test]): ax = fig.add_subplot(141+i, projection='3d') for post, c, z in zip(post_set.T, colors, positions): - hist, bins = np.histogram(post, bins=nbins, density=True) + hist, bins = np.histogram(post, bins=nbins, density=True, range=[0,1]) xs = (bins[:-1] + bins[1:])/2 ax.bar(xs, hist, width=1/nbins, zs=z, zdir='y', color=c, ec=c, alpha=0.6) diff --git a/distribution_matching/tables/gen_tables_compact.py b/distribution_matching/tables/gen_tables_compact.py new file mode 100644 index 0000000..d8a8d9f --- /dev/null +++ b/distribution_matching/tables/gen_tables_compact.py @@ -0,0 +1,249 @@ +from distribution_matching.commons import BIN_METHODS, METHODS +import quapy as qp +from os import makedirs +import os + +from tabular import Table +import pandas as pd + +tables_path = '.' +# makedirs(tables_path, exist_ok=True) + +MAXTONE = 35 # sets the intensity of the maximum color reached by the worst (red) and best (green) results +SHOW_STD = False + +NUM_ADJUSTMENT_METHODS = 2 if 'ACC' in METHODS else 1 +NUM_MAXIMUM_LIKELIHOOD_METHODS = 4 if 'DIR' in METHODS else 3 +NUM_DISTRIBUTION_MATCHING_PAIRS = 2 +NUM_DISTRIBUTION_MATCHING_METHODS = NUM_DISTRIBUTION_MATCHING_PAIRS*2 + (2 if 'HDy-OvA' in METHODS else 1) + +qp.environ['SAMPLE_SIZE'] = 100 + +nice_bench = { + 'sanders': 'Sanders', + 'semeval13': 'SemEval13', + 'semeval14': 'SemEval14', + 'semeval15': 'SemEval15', + 'semeval16': 'SemEval16', +} + +nice_method={ + 'KDEy-MLE': 'KDEy-ML', + 'KDEy-DMhd4': 'KDEy-HD', + 'KDEy-closed++': 'KDEy-CS', + 'EMQ-C': 'EMQ-BCTS' +} + +def save_table(path, table): + print(f'saving results in {path}') + with open(path, 'wt') as foo: + foo.write(table) + + +def nicerm(key): + return '\mathrm{'+nice[key]+'}' + + +def make_table(tabs, eval, benchmark_groups, benchmark_names, compact=False): + + n_methods = len(METHODS) + assert n_methods == (NUM_ADJUSTMENT_METHODS+NUM_DISTRIBUTION_MATCHING_METHODS+NUM_MAXIMUM_LIKELIHOOD_METHODS), \ + "Unexpected number of methods" + + cline = "\cline{2-" + str(n_methods+ 1) + "}" + + # write the latex table + tabular = """ + \\begin{tabular}{|c|""" + ('c|' * NUM_ADJUSTMENT_METHODS) + 'c|c' + ('|c|c' * (NUM_DISTRIBUTION_MATCHING_PAIRS)) + ('|c' * NUM_MAXIMUM_LIKELIHOOD_METHODS) + """|} """ + cline + """ + \multicolumn{1}{c}{} & + \multicolumn{"""+str(NUM_ADJUSTMENT_METHODS)+"""}{|c}{Adjustment} & + \multicolumn{"""+str(NUM_DISTRIBUTION_MATCHING_METHODS)+"""}{|c|}{Distribution Matching} & + \multicolumn{"""+str(NUM_MAXIMUM_LIKELIHOOD_METHODS)+"""}{c|}{Maximum Likelihood} \\\\ + \hline + """ + for i, (tab, group, name) in enumerate(zip(tabs, benchmark_groups, benchmark_names)): + tablines = tab.latexTabular(benchmark_replace=nice_bench, method_replace=nice_method, endl='\\\\'+ cline, aslines=True) + print(tablines) + tablines[0] = tablines[0].replace('\multicolumn{1}{c|}{}', '\\textbf{'+name+'}') + if not compact: + tabular += '\n'.join(tablines) + else: + # if compact, keep the method names and the average; discard the rest + tabular += tablines[0] + '\n' + tablines[-1] + '\n' + + tabular += "\n" + "\\textit{Rank} & " + tab.getRankTable(prec_mean=0 if name.startswith('LeQua') else 1).latexAverage() + if i < (len(tabs) - 1): + tabular += "\\hline\n" + else: + tabular += "\n" + tabular += "\end{tabular}" + return tabular + + +def gen_tables_uci_multiclass(eval): + + print('Generating table for UCI Multiclass Datasets', eval) + dir_results = f'../results/ucimulti/{eval}' + + datasets = qp.datasets.UCI_MULTICLASS_DATASETS + + tab = Table( + benchmarks=datasets, + methods=METHODS, + ttest='wilcoxon', + prec_mean=4, + show_std=SHOW_STD, + prec_std=4, + clean_zero=(eval=='mae'), + average=True, + maxtone=MAXTONE + ) + + for dataset in datasets: + print(f'\t Dataset: {dataset}: ', end='') + for method in METHODS: + result_path = f'{dir_results}/{method}_{dataset}.dataframe' + if os.path.exists(result_path): + df = pd.read_csv(result_path) + print(f'{method}', end=' ') + tab.add(dataset, method, df[eval].values) + else: + print(f'MISSING-{method}', end=' ') + print() + + return tab + + +def gen_tables_uci_bin(eval): + + print('Generating table for UCI Datasets', eval) + dir_results = f'../results/binary/{eval}' + + exclude = ['acute.a', 'acute.b', 'iris.1', 'balance.2'] + datasets = [x for x in qp.datasets.UCI_DATASETS if x not in exclude] + + tab = Table( + benchmarks=datasets, + methods=BIN_METHODS, + ttest='wilcoxon', + prec_mean=4, + show_std=SHOW_STD, + prec_std=4, + clean_zero=(eval=='mae'), + average=True, + maxtone=MAXTONE + ) + + for dataset in datasets: + print(f'\t Dataset: {dataset}: ', end='') + for method in BIN_METHODS: + result_path = f'{dir_results}/{method}_{dataset}.dataframe' + if os.path.exists(result_path): + df = pd.read_csv(result_path) + print(f'{method}', end=' ') + tab.add(dataset, method, df[eval].values) + else: + print(f'MISSING-{method}', end=' ') + + return tab + + + +def gen_tables_tweet(eval): + + print('Generating table for Twitter', eval) + dir_results = f'../results/tweet/{eval}' + + datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST + + tab = Table( + benchmarks=datasets, + methods=METHODS, + ttest='wilcoxon', + prec_mean=4, + show_std=SHOW_STD, + prec_std=4, + clean_zero=(eval=='mae'), + average=True, + maxtone=MAXTONE + ) + + for dataset in datasets: + print(f'\t Dataset: {dataset}: ', end='') + for method in METHODS: + result_path = f'{dir_results}/{method}_{dataset}.dataframe' + if os.path.exists(result_path): + df = pd.read_csv(result_path) + print(f'{method}', end=' ') + tab.add(dataset, method, df[eval].values) + else: + print(f'MISSING-{method}', end=' ') + print() + + return tab + + +def gen_tables_lequa(Methods, task, eval): + # generating table for LeQua-T1A or Lequa-T1B; only one table with two rows, one for MAE, another for MRAE + dataset_name = 'LeQua-'+task + + tab = Table( + benchmarks=[f'Average'], + methods=Methods, + ttest='wilcoxon', + prec_mean=5, + show_std=SHOW_STD, + prec_std=4, + clean_zero=False, + average=False, + maxtone=MAXTONE + ) + + print('Generating table for T1A@Lequa', eval, end='') + dir_results = f'../results/lequa/{task}/{eval}' + + for method in Methods: + result_path = f'{dir_results}/{method}.dataframe' + if os.path.exists(result_path): + df = pd.read_csv(result_path) + print(f'{method}', end=' ') + tab.add('Average', method, df[eval].values) + else: + print(f'MISSING-{method}', end=' ') + print() + + return tab + + + +if __name__ == '__main__': + os.makedirs('./latex', exist_ok=True) + + for eval in ['mae', 'mrae']: + tabs = [] + tabs.append(gen_tables_tweet(eval)) + tabs.append(gen_tables_uci_multiclass(eval)) + tabs.append(gen_tables_lequa(METHODS, 'T1B', eval)) + + names = ['Tweets', 'UCI-multi', 'LeQua-T1B'] + table = make_table(tabs, eval, benchmark_groups=tabs, benchmark_names=names) + save_table(f'./latex/multiclass_{eval}.tex', table) + + for eval in ['mae', 'mrae']: + tabs = [] + tabs.append(gen_tables_uci_bin(eval)) + + # print uci-binary with all datasets for the appendix + table = make_table(tabs, eval, benchmark_groups=tabs, benchmark_names=['UCI-binary']) + save_table(f'./latex/ucibinary_{eval}.tex', table) + + # print uci-bin compacted plus lequa-T1A for the main body + tabs.append(gen_tables_lequa(BIN_METHODS, 'T1A', eval)) + table = make_table(tabs, eval, benchmark_groups=tabs, benchmark_names=['UCI-binary', 'LeQua-T1A'], compact=True) + save_table(f'./latex/binary_{eval}.tex', table) + + print("[Tables Done] runing latex") + os.chdir('./latex/') + os.system('pdflatex tables_compact.tex') + os.system('rm tables_compact.aux tables_compact.bbl tables_compact.blg tables_compact.log tables_compact.out tables_compact.dvi') + diff --git a/distribution_matching/tables/latex/tables_compact.tex b/distribution_matching/tables/latex/tables_compact.tex new file mode 100644 index 0000000..f15bc23 --- /dev/null +++ b/distribution_matching/tables/latex/tables_compact.tex @@ -0,0 +1,107 @@ +\documentclass{article} + + + +\usepackage[utf8]{inputenc} % allow utf-8 input +\usepackage[T1]{fontenc} % use 8-bit T1 fonts +\usepackage{hyperref} % hyperlinks +\usepackage{url} % simple URL typesetting +\usepackage{booktabs} % professional-quality tables +\usepackage{amsfonts} % blackboard math symbols +\usepackage{nicefrac} % compact symbols for 1/2, etc. +\usepackage{microtype} % microtypography +\usepackage{lipsum} +\usepackage{fancyhdr} % header +\usepackage{graphicx} % graphics +\graphicspath{{media/}} % organize your images and other figures under media/ folder +\usepackage{amsmath} +\usepackage{bm} +\usepackage{tabularx} +\usepackage{color} +\usepackage{colortbl} +\usepackage{xcolor} +\usepackage{lmodern} + +\DeclareMathOperator*{\argmax}{arg\,max} +\DeclareMathOperator*{\argmin}{arg\,min} + +\newif\ifdraft +\drafttrue + +\newcommand{\juanjo}[1]{\ifdraft{\leavevmode\color{purple}{[JJ]: +{#1}}}\else{\vspace{0ex}}\fi} + +\newcommand{\alex}[1]{\ifdraft{\leavevmode\color{violet}{[AM]: +{#1}}}\else{\vspace{0ex}}\fi} + +\newcommand{\pablo}[1]{\ifdraft{\leavevmode\color{red}{[PG]: +{#1}}}\else{\vspace{0ex}}\fi} + + +\title{Tables} + + +\author{ + Alejandro Moreo +} + + +\begin{document} + +\maketitle + + + +\begin{table}[h] + \centering + \caption{Multiclass AE} +\resizebox{\textwidth}{!}{% +\input{multiclass_mae} +}% +\end{table} + + +\begin{table}[h] + \centering + \caption{Multiclass RAE} +\resizebox{\textwidth}{!}{% +\input{multiclass_mae} +}% +\end{table} + +\begin{table}[h] + \centering + \caption{Binary MAE} +\resizebox{\textwidth}{!}{% +\input{binary_mae} +}% +\end{table} + +\begin{table}[h] + \centering + \caption{Binary MRAE} + \resizebox{\textwidth}{!}{% + \input{binary_mrae} + }% + \end{table} + +\begin{table}[h] + \centering + \caption{UCI binary full AE} +\resizebox{\textwidth}{!}{% +\input{ucibinary_mae} +}% +\end{table} + +\begin{table}[h] + \centering + \caption{UCI binary full RAE} +\resizebox{\textwidth}{!}{% +\input{ucibinary_mrae} +}% +\end{table} + + + +\end{document} + diff --git a/distribution_matching/tables/tabular.py b/distribution_matching/tables/tabular.py new file mode 100644 index 0000000..eff7a44 --- /dev/null +++ b/distribution_matching/tables/tabular.py @@ -0,0 +1,348 @@ +import numpy as np +import itertools +from scipy.stats import ttest_ind_from_stats, wilcoxon + + +class Table: + VALID_TESTS = [None, "wilcoxon", "ttest"] + + def __init__(self, benchmarks, methods, lower_is_better=True, ttest='ttest', prec_mean=3, + clean_zero=False, show_std=False, prec_std=3, average=True, missing=None, missing_str='--', color=True, maxtone=50): + assert ttest in self.VALID_TESTS, f'unknown test, valid are {self.VALID_TESTS}' + + self.benchmarks = np.asarray(benchmarks) + self.benchmark_index = {row:i for i, row in enumerate(benchmarks)} + + self.methods = np.asarray(methods) + self.method_index = {col:j for j, col in enumerate(methods)} + + self.map = {} + # keyed (#rows,#cols)-ndarrays holding computations from self.map['values'] + self._addmap('values', dtype=object) + self.lower_is_better = lower_is_better + self.ttest = ttest + self.prec_mean = prec_mean + self.clean_zero = clean_zero + self.show_std = show_std + self.prec_std = prec_std + self.add_average = average + self.missing = missing + self.missing_str = missing_str + self.color = color + self.maxtone = maxtone + + self.touch() + + @property + def nbenchmarks(self): + return len(self.benchmarks) + + @property + def nmethods(self): + return len(self.methods) + + def touch(self): + self._modif = True + + def update(self): + if self._modif: + self.compute() + + def _getfilled(self): + return np.argwhere(self.map['fill']) + + @property + def values(self): + return self.map['values'] + + def _indexes(self): + return itertools.product(range(self.nbenchmarks), range(self.nmethods)) + + def _addmap(self, map, dtype, func=None): + self.map[map] = np.empty((self.nbenchmarks, self.nmethods), dtype=dtype) + if func is None: + return + m = self.map[map] + f = func + indexes = self._indexes() if map == 'fill' else self._getfilled() + for i, j in indexes: + m[i, j] = f(self.values[i, j]) + + def _addrank(self): + for i in range(self.nbenchmarks): + filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten() + col_means = [self.map['mean'][i,j] for j in filled_cols_idx] + ranked_cols_idx = filled_cols_idx[np.argsort(col_means)] + if not self.lower_is_better: + ranked_cols_idx = ranked_cols_idx[::-1] + self.map['rank'][i, ranked_cols_idx] = np.arange(1, len(filled_cols_idx)+1) + + def _addcolor(self): + for i in range(self.nbenchmarks): + filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten() + if filled_cols_idx.size==0: + continue + col_means = [self.map['mean'][i,j] for j in filled_cols_idx] + #col_means = [self.map['rank'][i, j] for j in filled_cols_idx] + + minval = min(col_means) + maxval = max(col_means) + + for col_idx in filled_cols_idx: + val = self.map['mean'][i,col_idx] + norm = (maxval - minval) + if norm > 0: + normval = (val - minval) / norm + else: + normval = 0.5 + + if self.lower_is_better: + normval = 1 - normval + + normval = np.clip(normval, 0,1) + + self.map['color'][i, col_idx] = color_red2green_01(normval, self.maxtone) + + def _run_ttest(self, row, col1, col2): + mean1 = self.map['mean'][row, col1] + std1 = self.map['std'][row, col1] + nobs1 = self.map['nobs'][row, col1] + mean2 = self.map['mean'][row, col2] + std2 = self.map['std'][row, col2] + nobs2 = self.map['nobs'][row, col2] + _, p_val = ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2) + return p_val + + def _run_wilcoxon(self, row, col1, col2): + values1 = self.map['values'][row, col1] + values2 = self.map['values'][row, col2] + try: + _, p_val = wilcoxon(values1, values2) + except ValueError: + p_val = 0 + return p_val + + def _add_statistical_test(self): + if self.ttest is None: + return + self.some_similar = [False]*self.nmethods + for i in range(self.nbenchmarks): + filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten() + if len(filled_cols_idx) <= 1: + continue + col_means = [self.map['mean'][i,j] for j in filled_cols_idx] + best_pos = filled_cols_idx[np.argmin(col_means)] + + for j in filled_cols_idx: + if j==best_pos: + continue + if self.ttest == 'ttest': + p_val = self._run_ttest(i, best_pos, j) + else: + p_val = self._run_wilcoxon(i, best_pos, j) + + pval_outcome = pval_interpretation(p_val) + self.map['ttest'][i, j] = pval_outcome + if pval_outcome != 'Diff': + self.some_similar[j] = True + + def compute(self): + self._addmap('fill', dtype=bool, func=lambda x: x is not None) + self._addmap('mean', dtype=float, func=np.mean) + self._addmap('std', dtype=float, func=np.std) + self._addmap('nobs', dtype=float, func=len) + self._addmap('rank', dtype=int, func=None) + self._addmap('color', dtype=object, func=None) + self._addmap('ttest', dtype=object, func=None) + self._addmap('latex', dtype=object, func=None) + self._addrank() + self._addcolor() + self._add_statistical_test() + if self.add_average: + self._addave() + self._modif = False + + def _is_column_full(self, col): + return all(self.map['fill'][:, self.method_index[col]]) + + def _addave(self): + ave = Table(['ave'], self.methods, + lower_is_better=self.lower_is_better, + ttest=self.ttest, + average=False, + missing=self.missing, + missing_str=self.missing_str, + prec_mean=self.prec_mean, + prec_std=self.prec_std, + clean_zero=self.clean_zero, + show_std=self.show_std, + color=self.color, + maxtone=self.maxtone) + for col in self.methods: + values = None + if self._is_column_full(col): + if self.ttest == 'ttest': + # values = np.asarray(self.map['mean'][:, self.method_index[col]]) + values = np.concatenate(self.values[:, self.method_index[col]]) + else: # wilcoxon + # values = np.asarray(self.map['mean'][:, self.method_index[col]]) + values = np.concatenate(self.values[:, self.method_index[col]]) + ave.add('ave', col, values) + self.average = ave + + def add(self, benchmark, method, values): + if values is not None: + values = np.asarray(values) + if values.ndim==0: + values = values.flatten() + rid, cid = self._coordinates(benchmark, method) + self.map['values'][rid, cid] = values + self.touch() + + def get(self, benchmark, method, attr='mean'): + self.update() + assert attr in self.map, f'unknwon attribute {attr}' + rid, cid = self._coordinates(benchmark, method) + if self.map['fill'][rid, cid]: + v = self.map[attr][rid, cid] + if v is None or (isinstance(v,float) and np.isnan(v)): + return self.missing + return v + else: + return self.missing + + def _coordinates(self, benchmark, method): + assert benchmark in self.benchmark_index, f'benchmark {benchmark} out of range' + assert method in self.method_index, f'method {method} out of range' + rid = self.benchmark_index[benchmark] + cid = self.method_index[method] + return rid, cid + + def get_average(self, method, attr='mean'): + self.update() + if self.add_average: + return self.average.get('ave', method, attr=attr) + return None + + def get_color(self, benchmark, method): + color = self.get(benchmark, method, attr='color') + if color is None: + return '' + return color + + def latex(self, benchmark, method): + self.update() + i,j = self._coordinates(benchmark, method) + if self.map['fill'][i,j] == False: + return self.missing_str + + mean = self.map['mean'][i,j] + l = f" {mean:.{self.prec_mean}f}" + if self.clean_zero: + l = l.replace(' 0.', '.') + + isbest = self.map['rank'][i,j] == 1 + if isbest: + l = "\\textbf{"+l.strip()+"}" + + stat = '' if self.ttest is None else '^{\phantom{\ddag}}' + if self.ttest is not None and self.some_similar[j]: + test_label = self.map['ttest'][i,j] + if test_label == 'Sim': + stat = '^{\dag}' + elif test_label == 'Same': + stat = '^{\ddag}' + elif isbest or test_label == 'Diff': + stat = '^{\phantom{\ddag}}' + + std = '' + if self.show_std: + std = self.map['std'][i,j] + std = f" {std:.{self.prec_std}f}" + if self.clean_zero: + std = std.replace(' 0.', '.') + std = f"\pm {std:{self.prec_std}}" + + if stat!='' or std!='': + l = f'{l}${stat}{std}$' + + if self.color: + l += ' ' + self.map['color'][i,j] + + return l + + def latexTabular(self, benchmark_replace={}, method_replace={}, aslines=False, endl='\\\\\hline'): + lines = [] + l = '\multicolumn{1}{c|}{} & ' + l += ' & '.join([method_replace.get(col, col) for col in self.methods]) + l += ' \\\\\hline' + lines.append(l) + + for row in self.benchmarks: + rowname = benchmark_replace.get(row, row) + l = rowname + ' & ' + l += self.latexRow(row, endl=endl) + lines.append(l) + + if self.add_average: + # l += '\hline\n' + l = '\hline \n \\textit{Average} & ' + l += self.latexAverage(endl=endl) + lines.append(l) + if not aslines: + lines='\n'.join(lines) + return lines + + def latexRow(self, benchmark, endl='\\\\\hline\n'): + s = [self.latex(benchmark, col) for col in self.methods] + s = ' & '.join(s) + s += ' ' + endl + return s + + def latexAverage(self, endl='\\\\\hline\n'): + if self.add_average: + return self.average.latexRow('ave', endl=endl) + + def getRankTable(self, prec_mean=0): + t = Table(benchmarks=self.benchmarks, methods=self.methods, prec_mean=prec_mean, average=True, maxtone=self.maxtone, ttest=None) + for rid, cid in self._getfilled(): + row = self.benchmarks[rid] + col = self.methods[cid] + t.add(row, col, self.get(row, col, 'rank')) + t.compute() + return t + + def dropMethods(self, methods): + drop_index = [self.method_index[m] for m in methods] + new_methods = np.delete(self.methods, drop_index) + new_index = {col:j for j, col in enumerate(new_methods)} + + self.map['values'] = self.values[:,np.asarray([self.method_index[m] for m in new_methods], dtype=int)] + self.methods = new_methods + self.method_index = new_index + self.touch() + + +def pval_interpretation(p_val): + if 0.005 >= p_val: + return 'Diff' + elif 0.05 >= p_val > 0.005: + return 'Sim' + elif p_val > 0.05: + return 'Same' + + +def color_red2green_01(val, maxtone=50): + if np.isnan(val): return None + assert 0 <= val <= 1, f'val {val} out of range [0,1]' + + + # rescale to [-1,1] + val = val * 2 - 1 + if val < 0: + color = 'red' + tone = maxtone * (-val) + else: + color = 'green' + tone = maxtone * val + return '\cellcolor{' + color + f'!{int(tone)}' + '}' diff --git a/distribution_matching/tweets_experiments.py b/distribution_matching/tweets_experiments.py index db66b2e..3f8230c 100644 --- a/distribution_matching/tweets_experiments.py +++ b/distribution_matching/tweets_experiments.py @@ -24,7 +24,6 @@ if __name__ == '__main__': for method in METHODS: print('Init method', method) - if method == 'EMQ-C': continue global_result_path = f'{result_dir}/{method}' diff --git a/quapy/model_selection.py b/quapy/model_selection.py index 1d256f9..91f2c7c 100644 --- a/quapy/model_selection.py +++ b/quapy/model_selection.py @@ -224,7 +224,7 @@ def cross_val_predict(quantifier: BaseQuantifier, data: LabelledCollection, nfol for train, test in data.kFCV(nfolds=nfolds, random_state=random_state): quantifier.fit(train) fold_prev = quantifier.quantify(test.X) - rel_size = len(test.X)/len(data) + rel_size = len(test)/len(data) total_prev += fold_prev*rel_size return total_prev diff --git a/quapy/plot.py b/quapy/plot.py index cdc3bd5..1ea30ac 100644 --- a/quapy/plot.py +++ b/quapy/plot.py @@ -11,7 +11,7 @@ import quapy as qp plt.rcParams['figure.figsize'] = [10, 6] plt.rcParams['figure.dpi'] = 200 -plt.rcParams['font.size'] = 18 +plt.rcParams['font.size'] = 12 def binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=1, title=None, show_std=True, legend=True, @@ -259,7 +259,7 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, data = _join_data_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, x_error, y_error, method_order) if method_order is None: - method_order = method_names + method_order = np.unique(method_names) _set_colors(ax, n_methods=len(method_order)) @@ -330,8 +330,8 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, if show_legend: fig.legend(loc='lower center', - bbox_to_anchor=(1, 0.5), - ncol=(len(method_names)+1)//2) + bbox_to_anchor=(0.9, 0.2), + ncol=1) _save_or_show(savepath)