forked from moreo/QuaPy
table generation
This commit is contained in:
parent
5df355a4e1
commit
b2e161480e
|
@ -0,0 +1,52 @@
|
|||
import pandas as pd
|
||||
from os.path import join
|
||||
import os
|
||||
from glob import glob
|
||||
from pathlib import Path
|
||||
|
||||
from Ordinal.main import quantifiers
|
||||
from Ordinal.tabular import Table
|
||||
|
||||
domain = 'Books-tfidf'
|
||||
prot = 'app'
|
||||
outpath = f'./tables/{domain}/{prot}/results.tex'
|
||||
|
||||
resultpath = join('./results', domain, prot)
|
||||
|
||||
methods = [qname for qname, *_ in quantifiers()]
|
||||
methods += [m+'-r' for m in methods]
|
||||
|
||||
table = Table(benchmarks=['low', 'mid', 'high'],
|
||||
methods=methods,
|
||||
prec_mean=4,
|
||||
show_std=True,
|
||||
prec_std=4)
|
||||
|
||||
|
||||
for resultfile in glob(f'{resultpath}/*.csv'):
|
||||
df = pd.read_csv(resultfile)
|
||||
nmd = df['nmd'].values
|
||||
resultname = Path(resultfile).name
|
||||
method, drift, *other = resultname.replace('.csv', '').split('.')
|
||||
if other:
|
||||
method += '-r'
|
||||
|
||||
table.add(drift, method, nmd)
|
||||
|
||||
os.makedirs(Path(outpath).parent, exist_ok=True)
|
||||
|
||||
tabular = """
|
||||
\\resizebox{\\textwidth}{!}{%
|
||||
\\begin{tabular}{|c||""" + ('c|' * (table.nbenchmarks+1)) + """} \hline
|
||||
"""
|
||||
tabular += table.latexTabularT()
|
||||
tabular += """
|
||||
\end{tabular}%
|
||||
}"""
|
||||
|
||||
with open(outpath, 'wt') as foo:
|
||||
foo.write(tabular)
|
||||
foo.write('\n')
|
||||
|
||||
print('[done]')
|
||||
|
160
Ordinal/main.py
160
Ordinal/main.py
|
@ -1,89 +1,151 @@
|
|||
import itertools
|
||||
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
import quapy as qp
|
||||
import numpy as np
|
||||
|
||||
from Ordinal.model import OrderedLogisticRegression, StackedClassifier, RegressionQuantification, RegressorClassifier
|
||||
from quapy.method.aggregative import PACC, CC, EMQ, PCC, ACC
|
||||
from quapy.method.aggregative import PACC, CC, EMQ, PCC, ACC, SLD, HDy
|
||||
from quapy.data import LabelledCollection
|
||||
from os.path import join
|
||||
import os
|
||||
from utils import load_samples, load_samples_pkl
|
||||
from evaluation import nmd, mnmd
|
||||
from time import time
|
||||
import pickle
|
||||
from tqdm import tqdm
|
||||
|
||||
domain = 'Books-tfidf'
|
||||
datapath = './data'
|
||||
protocol = 'app'
|
||||
drift = 'high'
|
||||
|
||||
train = pickle.load(open(join(datapath, domain, 'training_data.pkl'), 'rb'))
|
||||
import mord
|
||||
|
||||
|
||||
def load_test_samples():
|
||||
ids = np.load(join(datapath, domain, protocol, f'{drift}drift.test.id.npy'))
|
||||
ids = set(ids)
|
||||
for sample in tqdm(load_samples_pkl(join(datapath, domain, protocol, 'test_samples'), filter=ids), total=len(ids)):
|
||||
pklpath = join(datapath, domain, protocol, 'test_samples')
|
||||
for sample in tqdm(load_samples_pkl(pklpath, filter=ids), total=len(ids)):
|
||||
yield sample.instances, sample.prevalence()
|
||||
|
||||
|
||||
def load_dev_samples():
|
||||
ids = np.load(join(datapath, domain, protocol, f'{drift}drift.dev.id.npy'))
|
||||
ids = set(ids)
|
||||
for sample in tqdm(load_samples_pkl(join(datapath, domain, protocol, 'dev_samples'), filter=ids), total=len(ids)):
|
||||
pklpath = join(datapath, domain, protocol, 'dev_samples')
|
||||
for sample in tqdm(load_samples_pkl(pklpath, filter=ids), total=len(ids)):
|
||||
yield sample.instances, sample.prevalence()
|
||||
|
||||
|
||||
print('fitting the quantifier')
|
||||
class LAD(mord.LAD):
|
||||
def fit(self, X, y):
|
||||
self.classes_ = sorted(np.unique(y))
|
||||
return super().fit(X, y)
|
||||
|
||||
# q = EMQ(LogisticRegression(class_weight='balanced'))
|
||||
# q = PACC(LogisticRegression(class_weight='balanced'))
|
||||
q = PACC(OrderedLogisticRegression())
|
||||
# q = PACC(StackedClassifier(LogisticRegression(class_weight='balanced')))
|
||||
# q = RegressionQuantification(PCC(LogisticRegression(class_weight='balanced')), val_samples_generator=load_dev_samples)
|
||||
# q = ACC(RegressorClassifier())
|
||||
|
||||
param_grid = {'C': np.logspace(-3,3,7), 'class_weight': [None, 'balanced']}
|
||||
# param_grid = {'C': np.logspace(-3,3,14)}
|
||||
# param_grid = {'alpha':np.logspace(-8, 6, 15)}
|
||||
class OrdinalRidge(mord.OrdinalRidge):
|
||||
def fit(self, X, y):
|
||||
self.classes_ = sorted(np.unique(y))
|
||||
return super().fit(X, y)
|
||||
|
||||
# q = qp.model_selection.GridSearchQ(
|
||||
# q,
|
||||
# param_grid,
|
||||
# 1000,
|
||||
# 'gen',
|
||||
# error=mnmd,
|
||||
# val_split=load_dev_samples,
|
||||
# n_jobs=-1,
|
||||
# refit=False,
|
||||
# verbose=True)
|
||||
|
||||
q.fit(train)
|
||||
def quantifiers():
|
||||
params_LR = {'C': np.logspace(-3,3,7), 'class_weight': [None, 'balanced']}
|
||||
params_OLR = {'alpha':np.logspace(-3, 3, 7)}
|
||||
params_SVR = {'C': np.logspace(-3,3,7)}
|
||||
# params_SVR = {'C': np.logspace(0, 1, 2)}
|
||||
|
||||
# q = RegressionQuantification(q, val_samples_generator=load_dev_samples)
|
||||
# q.fit(None)
|
||||
# baselines
|
||||
yield 'CC(LR)', CC(LogisticRegression()), params_LR
|
||||
yield 'PCC(LR)', PCC(LogisticRegression()), params_LR
|
||||
yield 'ACC(LR)', ACC(LogisticRegression()), params_LR
|
||||
yield 'PACC(LR)', PACC(LogisticRegression()), params_LR
|
||||
#yield 'HDy(LR)', HDy(LogisticRegression()), params_LR
|
||||
yield 'SLD(LR)', EMQ(LogisticRegression()), params_LR
|
||||
|
||||
print('[done]')
|
||||
# with order-aware classifiers
|
||||
# threshold-based ordinal regression (see https://pythonhosted.org/mord/)
|
||||
yield 'CC(OLR-AT)', CC(mord.LogisticAT()), params_OLR
|
||||
yield 'PCC(OLR-AT)', PCC(mord.LogisticAT()), params_OLR
|
||||
yield 'ACC(OLR-AT)', ACC(mord.LogisticAT()), params_OLR
|
||||
yield 'PACC(OLR-AT)', PACC(mord.LogisticAT()), params_OLR
|
||||
#yield 'HDy(OLR-AT)', HDy(mord.LogisticAT()), params_OLR
|
||||
yield 'SLD(OLR-AT)', EMQ(mord.LogisticAT()), params_OLR
|
||||
# other options include mord.LogisticIT(alpha=1.), mord.LogisticSE(alpha=1.)
|
||||
|
||||
report = qp.evaluation.gen_prevalence_report(q, gen_fn=load_test_samples, error_metrics=[nmd])
|
||||
mean_nmd = report['nmd'].mean()
|
||||
std_nmd = report['nmd'].std()
|
||||
print(f'{mean_nmd:.4f} +-{std_nmd:.4f}')
|
||||
# regression-based ordinal regression (see https://pythonhosted.org/mord/)
|
||||
# I am using my implementation, which caters for predict_proba (linear distance to the two closest classes, 0 in the rest)
|
||||
# the other implementation has OrdinalRidge(alpha=1.0) and LAD(C=1.0) with my wrapper classes for having the nclasses_; those do
|
||||
# not implement predict_proba nor decision_score
|
||||
yield 'CC(SVR)', CC(RegressorClassifier()), params_SVR
|
||||
# yield 'PCC(SVR)', PCC(RegressorClassifier()), params_SVR
|
||||
# yield 'PCC-cal(SVR)', PCC(RegressorClassifier()), params_SVR
|
||||
# yield 'ACC(SVR)', ACC(RegressorClassifier()), params_SVR
|
||||
# yield 'PACC(SVR)', PACC(RegressorClassifier()), params_SVR
|
||||
#yield 'HDy(SVR)', HDy(RegressorClassifier()), params_SVR
|
||||
# yield 'SLD(SVR)', EMQ(RegressorClassifier()), params_SVR
|
||||
|
||||
q = RegressionQuantification(q, val_samples_generator=load_dev_samples)
|
||||
q.fit(None)
|
||||
|
||||
report = qp.evaluation.gen_prevalence_report(q, gen_fn=load_test_samples, error_metrics=[nmd])
|
||||
mean_nmd = report['nmd'].mean()
|
||||
std_nmd = report['nmd'].std()
|
||||
print(f'[regression-correction] {mean_nmd:.4f} +-{std_nmd:.4f}')
|
||||
def run_experiment(params):
|
||||
qname, q, param_grid, drift = params
|
||||
resultfile = join(resultpath, f'{qname}.{drift}.csv')
|
||||
if os.path.exists(resultfile):
|
||||
print(f'result file {resultfile} already exists: continue')
|
||||
return None
|
||||
|
||||
print(f'fitting {qname} for {drift}-drift')
|
||||
|
||||
q = qp.model_selection.GridSearchQ(
|
||||
q,
|
||||
param_grid,
|
||||
sample_size=1000,
|
||||
protocol='gen',
|
||||
error=mnmd,
|
||||
val_split=load_dev_samples,
|
||||
n_jobs=-1,
|
||||
refit=False,
|
||||
verbose=True).fit(train)
|
||||
|
||||
hyperparams = f'{qname}\t{drift}\t{q.best_params_}'
|
||||
|
||||
print('[done]')
|
||||
|
||||
report = qp.evaluation.gen_prevalence_report(q, gen_fn=load_test_samples, error_metrics=[nmd])
|
||||
mean_nmd = report['nmd'].mean()
|
||||
std_nmd = report['nmd'].std()
|
||||
print(f'{qname}: {mean_nmd:.4f} +-{std_nmd:.4f}')
|
||||
report.to_csv(resultfile, index=False)
|
||||
|
||||
print('[learning regressor-based adjustment]')
|
||||
q = RegressionQuantification(q.best_model(), val_samples_generator=load_dev_samples)
|
||||
q.fit(None)
|
||||
|
||||
report = qp.evaluation.gen_prevalence_report(q, gen_fn=load_test_samples, error_metrics=[nmd])
|
||||
mean_nmd = report['nmd'].mean()
|
||||
std_nmd = report['nmd'].std()
|
||||
print(f'[{qname} regression-correction] {mean_nmd:.4f} +-{std_nmd:.4f}')
|
||||
resultfile = join(resultpath, f'{qname}.{drift}.reg.csv')
|
||||
report.to_csv(resultfile, index=False)
|
||||
|
||||
return hyperparams
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
domain = 'Books-tfidf'
|
||||
datapath = './data'
|
||||
protocol = 'app'
|
||||
resultpath = join('./results', domain, protocol)
|
||||
os.makedirs(resultpath, exist_ok=True)
|
||||
|
||||
train = pickle.load(open(join(datapath, domain, 'training_data.pkl'), 'rb'))
|
||||
|
||||
with open(join(resultpath, 'hyper.txt'), 'at') as foo:
|
||||
for drift in ['low', 'mid', 'high']:
|
||||
params = [(*qs, drift) for qs in quantifiers()]
|
||||
hypers = qp.util.parallel(run_experiment, params, n_jobs=-2)
|
||||
for h in hypers:
|
||||
if h is not None:
|
||||
foo.write(h)
|
||||
foo.write('\n')
|
||||
|
||||
|
||||
# drift='high'
|
||||
# report = qp.evaluation.gen_prevalence_report(q, gen_fn=load_test_samples, error_metrics=[nmd])
|
||||
# mean_nmd = report['nmd'].mean()
|
||||
# std_nmd = report['nmd'].std()
|
||||
# print(f'{mean_nmd:.4f} +-{std_nmd:.4f}')
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -118,11 +118,12 @@ class RegressionQuantification:
|
|||
def quantify(self, instances):
|
||||
Xs = self.base_quantifier.quantify(instances).reshape(1, -1)
|
||||
# Xs = self.norm.transform(Xs)
|
||||
Xs = self.reg.predict(Xs)
|
||||
Xs = self.reg.predict(Xs).flatten()
|
||||
# Xs = self.norm.inverse_transform(Xs)
|
||||
Xs = np.clip(Xs, 0, 1)
|
||||
adjusted = Xs / Xs.sum()
|
||||
# adjusted = np.clip(Xs, 0, 1)
|
||||
adjusted = adjusted.flatten()
|
||||
adjusted = adjusted
|
||||
return adjusted
|
||||
|
||||
def get_params(self, deep=True):
|
||||
|
@ -133,13 +134,13 @@ class RegressionQuantification:
|
|||
|
||||
|
||||
class RegressorClassifier(BaseEstimator, ClassifierMixin):
|
||||
def __init__(self):
|
||||
self.regressor = LinearSVR()
|
||||
# self.regressor = SVR()
|
||||
# self.regressor = Ridge(normalize=True)
|
||||
|
||||
def __init__(self, C=1.0):
|
||||
self.C = C
|
||||
|
||||
def fit(self, X, y):
|
||||
self.regressor = LinearSVR(C=self.C)
|
||||
# self.regressor = SVR()
|
||||
# self.regressor = Ridge(normalize=True)
|
||||
self.nclasses = len(np.unique(y))
|
||||
self.regressor.fit(X, y)
|
||||
return self
|
||||
|
@ -151,13 +152,20 @@ class RegressorClassifier(BaseEstimator, ClassifierMixin):
|
|||
c[c>(self.nclasses-1)]=self.nclasses-1
|
||||
return c.astype(np.int)
|
||||
|
||||
def predict_proba(self, X):
|
||||
# def predict_proba(self, X):
|
||||
# r = self.regressor.predict(X)
|
||||
# nC = len(self.classes_)
|
||||
# r = np.clip(r, 0, nC - 1)
|
||||
# dists = np.abs(np.tile(np.arange(nC), (len(r), 1)) - r.reshape(-1,1))
|
||||
# invdist = 1 - dists
|
||||
# invdist[invdist < 0] = 0
|
||||
# return invdist
|
||||
|
||||
def decision_function(self, X):
|
||||
r = self.regressor.predict(X)
|
||||
nC = len(self.classes_)
|
||||
r = np.clip(r, 0, nC - 1)
|
||||
dists = np.abs(np.tile(np.arange(nC), (len(r), 1)) - r.reshape(-1,1))
|
||||
invdist = 1 - dists
|
||||
invdist[invdist < 0] = 0
|
||||
return invdist
|
||||
|
||||
@property
|
||||
|
@ -165,8 +173,9 @@ class RegressorClassifier(BaseEstimator, ClassifierMixin):
|
|||
return np.arange(self.nclasses)
|
||||
|
||||
def get_params(self, deep=True):
|
||||
return self.regressor.get_params()
|
||||
return {'C':self.C}
|
||||
|
||||
def set_params(self, **params):
|
||||
self.regressor.set_params(**params)
|
||||
self.C = params['C']
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,347 @@
|
|||
import numpy as np
|
||||
import itertools
|
||||
from scipy.stats import ttest_ind_from_stats, wilcoxon
|
||||
|
||||
|
||||
class Table:
|
||||
VALID_TESTS = [None, "wilcoxon", "ttest"]
|
||||
|
||||
def __init__(self, benchmarks, methods, lower_is_better=True, significance_test='ttest', prec_mean=3,
|
||||
clean_zero=False, show_std=False, prec_std=3, average=True, missing=None, missing_str='--',
|
||||
color=True):
|
||||
assert significance_test in self.VALID_TESTS, f'unknown test, valid are {self.VALID_TESTS}'
|
||||
|
||||
self.benchmarks = np.asarray(benchmarks)
|
||||
self.benchmark_index = {row: i for i, row in enumerate(benchmarks)}
|
||||
|
||||
self.methods = np.asarray(methods)
|
||||
self.method_index = {col: j for j, col in enumerate(methods)}
|
||||
|
||||
self.map = {}
|
||||
# keyed (#rows,#cols)-ndarrays holding computations from self.map['values']
|
||||
self._addmap('values', dtype=object)
|
||||
self.lower_is_better = lower_is_better
|
||||
self.ttest = significance_test
|
||||
self.prec_mean = prec_mean
|
||||
self.clean_zero = clean_zero
|
||||
self.show_std = show_std
|
||||
self.prec_std = prec_std
|
||||
self.add_average = average
|
||||
self.missing = missing
|
||||
self.missing_str = missing_str
|
||||
self.color = color
|
||||
|
||||
self.touch()
|
||||
|
||||
@property
|
||||
def nbenchmarks(self):
|
||||
return len(self.benchmarks)
|
||||
|
||||
@property
|
||||
def nmethods(self):
|
||||
return len(self.methods)
|
||||
|
||||
def touch(self):
|
||||
self._modif = True
|
||||
|
||||
def update(self):
|
||||
if self._modif:
|
||||
self.compute()
|
||||
|
||||
def _getfilled(self):
|
||||
return np.argwhere(self.map['fill'])
|
||||
|
||||
@property
|
||||
def values(self):
|
||||
return self.map['values']
|
||||
|
||||
def _indexes(self):
|
||||
return itertools.product(range(self.nbenchmarks), range(self.nmethods))
|
||||
|
||||
def _addmap(self, map, dtype, func=None):
|
||||
self.map[map] = np.empty((self.nbenchmarks, self.nmethods), dtype=dtype)
|
||||
if func is None:
|
||||
return
|
||||
m = self.map[map]
|
||||
f = func
|
||||
indexes = self._indexes() if map == 'fill' else self._getfilled()
|
||||
for i, j in indexes:
|
||||
m[i, j] = f(self.values[i, j])
|
||||
|
||||
def _addrank(self):
|
||||
for i in range(self.nbenchmarks):
|
||||
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
||||
col_means = [self.map['mean'][i, j] for j in filled_cols_idx]
|
||||
ranked_cols_idx = filled_cols_idx[np.argsort(col_means)]
|
||||
if not self.lower_is_better:
|
||||
ranked_cols_idx = ranked_cols_idx[::-1]
|
||||
self.map['rank'][i, ranked_cols_idx] = np.arange(1, len(filled_cols_idx) + 1)
|
||||
|
||||
def _addcolor(self):
|
||||
for i in range(self.nbenchmarks):
|
||||
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
||||
if filled_cols_idx.size == 0:
|
||||
continue
|
||||
col_means = [self.map['mean'][i, j] for j in filled_cols_idx]
|
||||
minval = min(col_means)
|
||||
maxval = max(col_means)
|
||||
for col_idx in filled_cols_idx:
|
||||
val = self.map['mean'][i, col_idx]
|
||||
norm = (maxval - minval)
|
||||
if norm > 0:
|
||||
normval = (val - minval) / norm
|
||||
else:
|
||||
normval = 0.5
|
||||
if self.lower_is_better:
|
||||
normval = 1 - normval
|
||||
self.map['color'][i, col_idx] = color_red2green_01(normval)
|
||||
|
||||
def _run_ttest(self, row, col1, col2):
|
||||
mean1 = self.map['mean'][row, col1]
|
||||
std1 = self.map['std'][row, col1]
|
||||
nobs1 = self.map['nobs'][row, col1]
|
||||
mean2 = self.map['mean'][row, col2]
|
||||
std2 = self.map['std'][row, col2]
|
||||
nobs2 = self.map['nobs'][row, col2]
|
||||
_, p_val = ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2)
|
||||
return p_val
|
||||
|
||||
def _run_wilcoxon(self, row, col1, col2):
|
||||
values1 = self.map['values'][row, col1]
|
||||
values2 = self.map['values'][row, col2]
|
||||
_, p_val = wilcoxon(values1, values2)
|
||||
return p_val
|
||||
|
||||
def _add_statistical_test(self):
|
||||
if self.ttest is None:
|
||||
return
|
||||
self.some_similar = [False] * self.nmethods
|
||||
for i in range(self.nbenchmarks):
|
||||
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
||||
if len(filled_cols_idx) <= 1:
|
||||
continue
|
||||
col_means = [self.map['mean'][i, j] for j in filled_cols_idx]
|
||||
best_pos = filled_cols_idx[np.argmin(col_means)]
|
||||
|
||||
for j in filled_cols_idx:
|
||||
if j == best_pos:
|
||||
continue
|
||||
if self.ttest == 'ttest':
|
||||
p_val = self._run_ttest(i, best_pos, j)
|
||||
else:
|
||||
p_val = self._run_wilcoxon(i, best_pos, j)
|
||||
|
||||
pval_outcome = pval_interpretation(p_val)
|
||||
self.map['ttest'][i, j] = pval_outcome
|
||||
if pval_outcome != 'Diff':
|
||||
self.some_similar[j] = True
|
||||
|
||||
def compute(self):
|
||||
self._addmap('fill', dtype=bool, func=lambda x: x is not None)
|
||||
self._addmap('mean', dtype=float, func=np.mean)
|
||||
self._addmap('std', dtype=float, func=np.std)
|
||||
self._addmap('nobs', dtype=float, func=len)
|
||||
self._addmap('rank', dtype=int, func=None)
|
||||
self._addmap('color', dtype=object, func=None)
|
||||
self._addmap('ttest', dtype=object, func=None)
|
||||
self._addmap('latex', dtype=object, func=None)
|
||||
self._addrank()
|
||||
self._addcolor()
|
||||
self._add_statistical_test()
|
||||
if self.add_average:
|
||||
self._addave()
|
||||
self._modif = False
|
||||
|
||||
def _is_column_full(self, col):
|
||||
return all(self.map['fill'][:, self.method_index[col]])
|
||||
|
||||
def _addave(self):
|
||||
ave = Table(['ave'], self.methods, lower_is_better=self.lower_is_better, significance_test=self.ttest, average=False,
|
||||
missing=self.missing, missing_str=self.missing_str, prec_mean=self.prec_mean, prec_std=self.prec_std,
|
||||
show_std=self.show_std)
|
||||
for col in self.methods:
|
||||
values = None
|
||||
if self._is_column_full(col):
|
||||
if self.ttest == 'ttest':
|
||||
values = np.asarray(self.map['mean'][:, self.method_index[col]])
|
||||
else: # wilcoxon
|
||||
values = np.concatenate(self.values[:, self.method_index[col]])
|
||||
ave.add('ave', col, values)
|
||||
self.average = ave
|
||||
|
||||
def add(self, benchmark, method, values):
|
||||
if values is not None:
|
||||
values = np.asarray(values)
|
||||
if values.ndim == 0:
|
||||
values = values.flatten()
|
||||
rid, cid = self._coordinates(benchmark, method)
|
||||
if self.map['values'][rid, cid] is None:
|
||||
self.map['values'][rid, cid] = values
|
||||
elif values is not None:
|
||||
self.map['values'][rid, cid] = np.concatenate([self.map['values'][rid, cid], values])
|
||||
self.touch()
|
||||
|
||||
def get(self, benchmark, method, attr='mean'):
|
||||
self.update()
|
||||
assert attr in self.map, f'unknwon attribute {attr}'
|
||||
rid, cid = self._coordinates(benchmark, method)
|
||||
if self.map['fill'][rid, cid]:
|
||||
v = self.map[attr][rid, cid]
|
||||
if v is None or (isinstance(v, float) and np.isnan(v)):
|
||||
return self.missing
|
||||
return v
|
||||
else:
|
||||
return self.missing
|
||||
|
||||
def _coordinates(self, benchmark, method):
|
||||
assert benchmark in self.benchmark_index, f'benchmark {benchmark} out of range'
|
||||
assert method in self.method_index, f'method {method} out of range'
|
||||
rid = self.benchmark_index[benchmark]
|
||||
cid = self.method_index[method]
|
||||
return rid, cid
|
||||
|
||||
def get_average(self, method, attr='mean'):
|
||||
self.update()
|
||||
if self.add_average:
|
||||
return self.average.get('ave', method, attr=attr)
|
||||
return None
|
||||
|
||||
def get_color(self, benchmark, method):
|
||||
color = self.get(benchmark, method, attr='color')
|
||||
if color is None:
|
||||
return ''
|
||||
return color
|
||||
|
||||
def latexCell(self, benchmark, method):
|
||||
self.update()
|
||||
i, j = self._coordinates(benchmark, method)
|
||||
if self.map['fill'][i, j] == False:
|
||||
return self.missing_str
|
||||
|
||||
mean = self.map['mean'][i, j]
|
||||
l = f" {mean:.{self.prec_mean}f}"
|
||||
if self.clean_zero:
|
||||
l = l.replace(' 0.', '.')
|
||||
|
||||
isbest = self.map['rank'][i, j] == 1
|
||||
if isbest:
|
||||
l = "\\textbf{" + l.strip() + "}"
|
||||
|
||||
stat = ''
|
||||
if self.ttest is not None: # and self.some_similar[j]:
|
||||
test_label = self.map['ttest'][i, j]
|
||||
if test_label == 'Sim':
|
||||
stat = '^{\dag\phantom{\dag}}'
|
||||
elif test_label == 'Same':
|
||||
stat = '^{\ddag}'
|
||||
elif isbest or test_label == 'Diff':
|
||||
stat = '^{\phantom{\ddag}}'
|
||||
|
||||
std = ''
|
||||
if self.show_std:
|
||||
std = self.map['std'][i, j]
|
||||
std = f" {std:.{self.prec_std}f}"
|
||||
if self.clean_zero:
|
||||
std = std.replace(' 0.', '.')
|
||||
std = f" \pm {std:{self.prec_std}}"
|
||||
|
||||
if stat != '' or std != '':
|
||||
l = f'{l}${stat}{std}$'
|
||||
|
||||
if self.color:
|
||||
l += ' ' + self.map['color'][i, j]
|
||||
|
||||
return l
|
||||
|
||||
def latexTabular(self, benchmark_replace={}, method_replace={}, average=True):
|
||||
tab = ' & '
|
||||
tab += ' & '.join([method_replace.get(col, col) for col in self.methods])
|
||||
tab += ' \\\\\hline\n'
|
||||
for row in self.benchmarks:
|
||||
rowname = benchmark_replace.get(row, row)
|
||||
tab += rowname + ' & '
|
||||
tab += self.latexRow(row)
|
||||
|
||||
if average:
|
||||
tab += '\hline\n'
|
||||
tab += 'Average & '
|
||||
tab += self.latexAverage()
|
||||
return tab
|
||||
|
||||
def latexTabularT(self, benchmark_replace={}, method_replace={}, average=True, side=False):
|
||||
def withside(label):
|
||||
return '\side{'+label+'}' if side else label
|
||||
|
||||
tab = ' & '
|
||||
tab += ' & '.join([withside(benchmark_replace.get(col, col)) for col in self.benchmarks])
|
||||
if average:
|
||||
tab += ' & ' + withside('Ave')
|
||||
tab += ' \\\\\hline\n'
|
||||
for row in self.methods:
|
||||
rowname = method_replace.get(row, row)
|
||||
tab += rowname + ' & '
|
||||
tab += self.latexRowT(row, endl='')
|
||||
if average:
|
||||
tab += ' & '
|
||||
tab += self.average.latexCell('ave', row)
|
||||
tab += '\\\\\hline\n'
|
||||
return tab
|
||||
|
||||
def latexRow(self, benchmark, endl='\\\\\hline\n'):
|
||||
s = [self.latexCell(benchmark, col) for col in self.methods]
|
||||
s = ' & '.join(s)
|
||||
s += ' ' + endl
|
||||
return s
|
||||
|
||||
def latexRowT(self, method, endl='\\\\\hline\n'):
|
||||
s = [self.latexCell(benchmark, method) for benchmark in self.benchmarks]
|
||||
s = ' & '.join(s)
|
||||
s += ' ' + endl
|
||||
return s
|
||||
|
||||
def latexAverage(self, endl='\\\\\hline\n'):
|
||||
if self.add_average:
|
||||
return self.average.latexRow('ave', endl=endl)
|
||||
|
||||
def getRankTable(self):
|
||||
t = Table(benchmarks=self.benchmarks, methods=self.methods, prec_mean=0, average=True)
|
||||
for rid, cid in self._getfilled():
|
||||
row = self.benchmarks[rid]
|
||||
col = self.methods[cid]
|
||||
t.add(row, col, self.get(row, col, 'rank'))
|
||||
t.compute()
|
||||
return t
|
||||
|
||||
def dropMethods(self, methods):
|
||||
drop_index = [self.method_index[m] for m in methods]
|
||||
new_methods = np.delete(self.methods, drop_index)
|
||||
new_index = {col: j for j, col in enumerate(new_methods)}
|
||||
|
||||
self.map['values'] = self.values[:, np.asarray([self.method_index[m] for m in new_methods], dtype=int)]
|
||||
self.methods = new_methods
|
||||
self.method_index = new_index
|
||||
self.touch()
|
||||
|
||||
|
||||
def pval_interpretation(p_val):
|
||||
if 0.005 >= p_val:
|
||||
return 'Diff'
|
||||
elif 0.05 >= p_val > 0.005:
|
||||
return 'Sim'
|
||||
elif p_val > 0.05:
|
||||
return 'Same'
|
||||
|
||||
|
||||
def color_red2green_01(val, maxtone=50):
|
||||
if np.isnan(val): return None
|
||||
assert 0 <= val <= 1, f'val {val} out of range [0,1]'
|
||||
|
||||
# rescale to [-1,1]
|
||||
val = val * 2 - 1
|
||||
if val < 0:
|
||||
color = 'red'
|
||||
tone = maxtone * (-val)
|
||||
else:
|
||||
color = 'green'
|
||||
tone = maxtone * val
|
||||
return '\cellcolor{' + color + f'!{int(tone)}' + '}'
|
|
@ -15,8 +15,6 @@ def load_samples(path_dir, classes):
|
|||
def load_samples_pkl(path_dir, filter=None):
|
||||
nsamples = len(glob(join(path_dir, f'*.pkl')))
|
||||
for id in range(nsamples):
|
||||
if filter is not None:
|
||||
if id not in filter:
|
||||
continue
|
||||
yield pickle.load(open(join(path_dir, f'{id}.pkl'), 'rb'))
|
||||
if (filter is None) or id in filter:
|
||||
yield pickle.load(open(join(path_dir, f'{id}.pkl'), 'rb'))
|
||||
|
||||
|
|
|
@ -183,7 +183,7 @@ def _training_helper(learner,
|
|||
if not hasattr(learner, 'predict_proba'):
|
||||
print(f'The learner {learner.__class__.__name__} does not seem to be probabilistic. '
|
||||
f'The learner will be calibrated.')
|
||||
learner = CalibratedClassifierCV(learner, cv=5)
|
||||
learner = CalibratedClassifierCV(learner, cv=5, ensemble=True)
|
||||
if val_split is not None:
|
||||
if isinstance(val_split, float):
|
||||
if not (0 < val_split < 1):
|
||||
|
|
Loading…
Reference in New Issue