1
0
Fork 0

Merge branch 'devel'

v0.1.8 release, see CHANGELOG.txt
This commit is contained in:
Alejandro Moreo Fernandez 2024-02-14 14:16:50 +01:00
commit a50b149bb8
83 changed files with 8122 additions and 11119 deletions

29
.gitignore vendored
View File

@ -130,3 +130,32 @@ dmypy.json
.pyre/
*__pycache__*
*.pdf
*.zip
*.png
*.csv
*.pkl
*.dataframe
# other projects
LeQua2022
MultiLabel
NewMethods
Ordinal
Retrieval
eDiscovery
poster-cikm
slides-cikm
slides-short-cikm
quick_experiment
svm_perf_quantification/svm_struct
svm_perf_quantification/svm_light
TweetSentQuant
*.png

View File

@ -1,3 +1,56 @@
Change Log 0.1.8
----------------
- Added Kernel Density Estimation methods (KDEyML, KDEyCS, KDEyHD) as proposed in the paper:
Moreo, A., González, P., & del Coz, J. J. Kernel Density Estimation for Multiclass Quantification.
arXiv preprint arXiv:2401.00490, 2024
- Substantial internal refactor: aggregative methods now inherit a pattern by which the fit method consists of:
a) fitting the classifier and returning the representations of the training instances (typically the posterior
probabilities, the label predictions, or the classifier scores, and typically obtained through kFCV).
b) fitting an aggregation function
The function implemented in step a) is inherited from the super class. Each new aggregative method now has to
implement only the "aggregative_fit" of step b).
This pattern was already implemented for the prediction (thus allowing evaluation functions to be performed
very quicky), and is now available also for training. The main benefit is that model selection now can nestle
the training of quantifiers in two levels: one for the classifier, and another for the aggregation function.
As a result, a method with a param grid of 10 combinations for the classifier and 10 combinations for the
quantifier, now implies 10 trainings of the classifier + 10*10 trainings of the aggregation function (this is
typically much faster than the classifier training), whereas in versions <0.1.8 this amounted to training
10*10 (classifiers+aggregations).
- Added different solvers for ACC and PACC quantifiers. In quapy < 0.1.8 these quantifiers try to solve the system
of equations Ax=B exactly (by means of np.linalg.solve). As noted by Mirko Bunse (thanks!), such an exact solution
does sometimes not exist. In cases like this, quapy < 0.1.8 resorted to CC for providing a plausible solution.
ACC and PACC now resorts to an approximated solution in such cases (minimizing the L2-norm of the difference
between Ax-B) as proposed by Mirko Bunse. A quick experiment reveals this heuristic greatly improves the results
of ACC and PACC in T2A@LeQua.
- Fixed ThresholdOptimization methods (X, T50, MAX, MS and MS2). Thanks to Tobias Schumacher and colleagues for pointing
this out in Appendix A of "Schumacher, T., Strohmaier, M., & Lemmerich, F. (2021). A comparative evaluation of
quantification methods. arXiv:2103.03223v3 [cs.LG]"
- Added HDx and DistributionMatchingX to non-aggregative quantifiers (see also the new example "comparing_HDy_HDx.py")
- New UCI multiclass datasets added (thanks to Pablo González). The 5 UCI multiclass datasets are those corresponding
to the following criteria:
- >1000 instances
- >2 classes
- classification datasets
- Python API available
- New IFCB (plankton) dataset added (thanks to Pablo González). See qp.datasets.fetch_IFCB.
- Added new evaluation measures NAE, NRAE (thanks to Andrea Esuli)
- Added new meta method "MedianEstimator"; an ensemble of binary base quantifiers that receives as input a dictionary
of hyperparameters that will explore exhaustively, fitting and generating predictions for each combination of
hyperparameters, and that returns, as the prevalence estimates, the median across all predictions.
- Added "custom_protocol.py" example.
- New API documentation template.
Change Log 0.1.7
----------------

View File

@ -13,7 +13,7 @@ for facilitating the analysis and interpretation of the experimental results.
### Last updates:
* Version 0.1.7 is released! major changes can be consulted [here](quapy/CHANGE_LOG.txt).
* Version 0.1.8 is released! major changes can be consulted [here](CHANGE_LOG.txt).
* A detailed documentation is now available [here](https://hlt-isti.github.io/QuaPy/)
* The developer API documentation is available [here](https://hlt-isti.github.io/QuaPy/build/html/modules.html)
@ -76,7 +76,7 @@ See the [Wiki](https://github.com/HLT-ISTI/QuaPy/wiki) for detailed examples.
* Implementation of many popular quantification methods (Classify-&-Count and its variants, Expectation Maximization,
quantification methods based on structured output learning, HDy, QuaNet, quantification ensembles, among others).
* Versatile functionality for performing evaluation based on sampling generation protocols (e.g., APP, NPP, etc.).
* Implementation of most commonly used evaluation metrics (e.g., AE, RAE, SE, KLD, NKLD, etc.).
* Implementation of most commonly used evaluation metrics (e.g., AE, RAE, NAE, NRAE, SE, KLD, NKLD, etc.).
* Datasets frequently used in quantification (textual and numeric), including:
* 32 UCI Machine Learning datasets.
* 11 Twitter quantification-by-sentiment datasets.
@ -96,6 +96,9 @@ quantification methods based on structured output learning, HDy, QuaNet, quantif
* pandas, xlrd
* matplotlib
## Contributing
In case you want to contribute improvements to quapy, please generate pull request to the "devel" branch.
## Documentation

View File

@ -33,7 +33,6 @@ Refactor protocols. APP and NPP related functionalities are duplicated in functi
New features:
==========================================
Add NAE, NRAE
Add "measures for evaluating ordinal"?
Add datasets for topic.
Do we want to cover cross-lingual quantification natively in QuaPy, or does it make more sense as an application on top?

View File

@ -1,831 +0,0 @@
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<title>Datasets &#8212; QuaPy 0.1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/bizstyle.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Evaluation" href="Evaluation.html" />
<link rel="prev" title="Installation" href="Installation.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="Evaluation.html" title="Evaluation"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="Installation.html" title="Installation"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Datasets</a></li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<section id="datasets">
<h1>Datasets<a class="headerlink" href="#datasets" title="Permalink to this heading"></a></h1>
<p>QuaPy makes available several datasets that have been used in
quantification literature, as well as an interface to allow
anyone import their custom datasets.</p>
<p>A <em>Dataset</em> object in QuaPy is roughly a pair of <em>LabelledCollection</em> objects,
one playing the role of the training set, another the test set.
<em>LabelledCollection</em> is a data class consisting of the (iterable)
instances and labels. This class handles most of the sampling functionality in QuaPy.
Take a look at the following code:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="kn">import</span> <span class="nn">quapy.functional</span> <span class="k">as</span> <span class="nn">F</span>
<span class="n">instances</span> <span class="o">=</span> <span class="p">[</span>
<span class="s1">&#39;1st positive document&#39;</span><span class="p">,</span> <span class="s1">&#39;2nd positive document&#39;</span><span class="p">,</span>
<span class="s1">&#39;the only negative document&#39;</span><span class="p">,</span>
<span class="s1">&#39;1st neutral document&#39;</span><span class="p">,</span> <span class="s1">&#39;2nd neutral document&#39;</span><span class="p">,</span> <span class="s1">&#39;3rd neutral document&#39;</span>
<span class="p">]</span>
<span class="n">labels</span> <span class="o">=</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">LabelledCollection</span><span class="p">(</span><span class="n">instances</span><span class="p">,</span> <span class="n">labels</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">strprev</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">prevalence</span><span class="p">(),</span> <span class="n">prec</span><span class="o">=</span><span class="mi">2</span><span class="p">))</span>
</pre></div>
</div>
<p>Output the class prevalences (showing 2 digit precision):</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">[</span><span class="mf">0.17</span><span class="p">,</span> <span class="mf">0.50</span><span class="p">,</span> <span class="mf">0.33</span><span class="p">]</span>
</pre></div>
</div>
<p>One can easily produce new samples at desired class prevalence values:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">sample_size</span> <span class="o">=</span> <span class="mi">10</span>
<span class="n">prev</span> <span class="o">=</span> <span class="p">[</span><span class="mf">0.4</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">]</span>
<span class="n">sample</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">sampling</span><span class="p">(</span><span class="n">sample_size</span><span class="p">,</span> <span class="o">*</span><span class="n">prev</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;instances:&#39;</span><span class="p">,</span> <span class="n">sample</span><span class="o">.</span><span class="n">instances</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;labels:&#39;</span><span class="p">,</span> <span class="n">sample</span><span class="o">.</span><span class="n">labels</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;prevalence:&#39;</span><span class="p">,</span> <span class="n">F</span><span class="o">.</span><span class="n">strprev</span><span class="p">(</span><span class="n">sample</span><span class="o">.</span><span class="n">prevalence</span><span class="p">(),</span> <span class="n">prec</span><span class="o">=</span><span class="mi">2</span><span class="p">))</span>
</pre></div>
</div>
<p>Which outputs:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">instances</span><span class="p">:</span> <span class="p">[</span><span class="s1">&#39;the only negative document&#39;</span> <span class="s1">&#39;2nd positive document&#39;</span>
<span class="s1">&#39;2nd positive document&#39;</span> <span class="s1">&#39;2nd neutral document&#39;</span> <span class="s1">&#39;1st positive document&#39;</span>
<span class="s1">&#39;the only negative document&#39;</span> <span class="s1">&#39;the only negative document&#39;</span>
<span class="s1">&#39;the only negative document&#39;</span> <span class="s1">&#39;2nd positive document&#39;</span>
<span class="s1">&#39;1st positive document&#39;</span><span class="p">]</span>
<span class="n">labels</span><span class="p">:</span> <span class="p">[</span><span class="mi">0</span> <span class="mi">2</span> <span class="mi">2</span> <span class="mi">1</span> <span class="mi">2</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">2</span> <span class="mi">2</span><span class="p">]</span>
<span class="n">prevalence</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.40</span><span class="p">,</span> <span class="mf">0.10</span><span class="p">,</span> <span class="mf">0.50</span><span class="p">]</span>
</pre></div>
</div>
<p>Samples can be made consistent across different runs (e.g., to test
different methods on the same exact samples) by sampling and retaining
the indexes, that can then be used to generate the sample:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">index</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">sampling_index</span><span class="p">(</span><span class="n">sample_size</span><span class="p">,</span> <span class="o">*</span><span class="n">prev</span><span class="p">)</span>
<span class="k">for</span> <span class="n">method</span> <span class="ow">in</span> <span class="n">methods</span><span class="p">:</span>
<span class="n">sample</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">sampling_from_index</span><span class="p">(</span><span class="n">index</span><span class="p">)</span>
<span class="o">...</span>
</pre></div>
</div>
<p>However, generating samples for evaluation purposes is tackled in QuaPy
by means of the evaluation protocols (see the dedicated entries in the Wiki
for <a class="reference external" href="https://github.com/HLT-ISTI/QuaPy/wiki/Evaluation">evaluation</a> and
<a class="reference external" href="https://github.com/HLT-ISTI/QuaPy/wiki/Protocols">protocols</a>).</p>
<section id="reviews-datasets">
<h2>Reviews Datasets<a class="headerlink" href="#reviews-datasets" title="Permalink to this heading"></a></h2>
<p>Three datasets of reviews about Kindle devices, Harry Potters series, and
the well-known IMDb movie reviews can be fetched using a unified interface.
For example:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_reviews</span><span class="p">(</span><span class="s1">&#39;kindle&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>These datasets have been used in:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">Esuli</span><span class="p">,</span> <span class="n">A</span><span class="o">.</span><span class="p">,</span> <span class="n">Moreo</span><span class="p">,</span> <span class="n">A</span><span class="o">.</span><span class="p">,</span> <span class="o">&amp;</span> <span class="n">Sebastiani</span><span class="p">,</span> <span class="n">F</span><span class="o">.</span> <span class="p">(</span><span class="mi">2018</span><span class="p">,</span> <span class="n">October</span><span class="p">)</span><span class="o">.</span>
<span class="n">A</span> <span class="n">recurrent</span> <span class="n">neural</span> <span class="n">network</span> <span class="k">for</span> <span class="n">sentiment</span> <span class="n">quantification</span><span class="o">.</span>
<span class="n">In</span> <span class="n">Proceedings</span> <span class="n">of</span> <span class="n">the</span> <span class="mi">27</span><span class="n">th</span> <span class="n">ACM</span> <span class="n">International</span> <span class="n">Conference</span> <span class="n">on</span>
<span class="n">Information</span> <span class="ow">and</span> <span class="n">Knowledge</span> <span class="n">Management</span> <span class="p">(</span><span class="n">pp</span><span class="o">.</span> <span class="mi">1775</span><span class="o">-</span><span class="mi">1778</span><span class="p">)</span><span class="o">.</span>
</pre></div>
</div>
<p>The list of reviews ids is available in:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">REVIEWS_SENTIMENT_DATASETS</span>
</pre></div>
</div>
<p>Some statistics of the fhe available datasets are summarized below:</p>
<table class="docutils align-default">
<thead>
<tr class="row-odd"><th class="head"><p>Dataset</p></th>
<th class="head text-center"><p>classes</p></th>
<th class="head text-center"><p>train size</p></th>
<th class="head text-center"><p>test size</p></th>
<th class="head text-center"><p>train prev</p></th>
<th class="head text-center"><p>test prev</p></th>
<th class="head"><p>type</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>hp</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>9533</p></td>
<td class="text-center"><p>18399</p></td>
<td class="text-center"><p>[0.018, 0.982]</p></td>
<td class="text-center"><p>[0.065, 0.935]</p></td>
<td><p>text</p></td>
</tr>
<tr class="row-odd"><td><p>kindle</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>3821</p></td>
<td class="text-center"><p>21591</p></td>
<td class="text-center"><p>[0.081, 0.919]</p></td>
<td class="text-center"><p>[0.063, 0.937]</p></td>
<td><p>text</p></td>
</tr>
<tr class="row-even"><td><p>imdb</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>25000</p></td>
<td class="text-center"><p>25000</p></td>
<td class="text-center"><p>[0.500, 0.500]</p></td>
<td class="text-center"><p>[0.500, 0.500]</p></td>
<td><p>text</p></td>
</tr>
</tbody>
</table>
</section>
<section id="twitter-sentiment-datasets">
<h2>Twitter Sentiment Datasets<a class="headerlink" href="#twitter-sentiment-datasets" title="Permalink to this heading"></a></h2>
<p>11 Twitter datasets for sentiment analysis.
Text is not accessible, and the documents were made available
in tf-idf format. Each dataset presents two splits: a train/val
split for model selection purposes, and a train+val/test split
for model evaluation. The following code exemplifies how to load
a twitter dataset for model selection.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_twitter</span><span class="p">(</span><span class="s1">&#39;gasp&#39;</span><span class="p">,</span> <span class="n">for_model_selection</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p>The datasets were used in:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">Gao</span><span class="p">,</span> <span class="n">W</span><span class="o">.</span><span class="p">,</span> <span class="o">&amp;</span> <span class="n">Sebastiani</span><span class="p">,</span> <span class="n">F</span><span class="o">.</span> <span class="p">(</span><span class="mi">2015</span><span class="p">,</span> <span class="n">August</span><span class="p">)</span><span class="o">.</span>
<span class="n">Tweet</span> <span class="n">sentiment</span><span class="p">:</span> <span class="n">From</span> <span class="n">classification</span> <span class="n">to</span> <span class="n">quantification</span><span class="o">.</span>
<span class="n">In</span> <span class="mi">2015</span> <span class="n">IEEE</span><span class="o">/</span><span class="n">ACM</span> <span class="n">International</span> <span class="n">Conference</span> <span class="n">on</span> <span class="n">Advances</span> <span class="ow">in</span>
<span class="n">Social</span> <span class="n">Networks</span> <span class="n">Analysis</span> <span class="ow">and</span> <span class="n">Mining</span> <span class="p">(</span><span class="n">ASONAM</span><span class="p">)</span> <span class="p">(</span><span class="n">pp</span><span class="o">.</span> <span class="mi">97</span><span class="o">-</span><span class="mi">104</span><span class="p">)</span><span class="o">.</span> <span class="n">IEEE</span><span class="o">.</span>
</pre></div>
</div>
<p>Three of the datasets (semeval13, semeval14, and semeval15) share the
same training set (semeval), meaning that the training split one would get
when requesting any of them is the same. The dataset “semeval” can only
be requested with “for_model_selection=True”.
The lists of the Twitter datasets ids can be consulted in:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># a list of 11 dataset ids that can be used for model selection or model evaluation</span>
<span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">TWITTER_SENTIMENT_DATASETS_TEST</span>
<span class="c1"># 9 dataset ids in which &quot;semeval13&quot;, &quot;semeval14&quot;, and &quot;semeval15&quot; are replaced with &quot;semeval&quot;</span>
<span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">TWITTER_SENTIMENT_DATASETS_TRAIN</span>
</pre></div>
</div>
<p>Some details can be found below:</p>
<table class="docutils align-default">
<thead>
<tr class="row-odd"><th class="head"><p>Dataset</p></th>
<th class="head text-center"><p>classes</p></th>
<th class="head text-center"><p>train size</p></th>
<th class="head text-center"><p>test size</p></th>
<th class="head text-center"><p>features</p></th>
<th class="head text-center"><p>train prev</p></th>
<th class="head text-center"><p>test prev</p></th>
<th class="head"><p>type</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>gasp</p></td>
<td class="text-center"><p>3</p></td>
<td class="text-center"><p>8788</p></td>
<td class="text-center"><p>3765</p></td>
<td class="text-center"><p>694582</p></td>
<td class="text-center"><p>[0.421, 0.496, 0.082]</p></td>
<td class="text-center"><p>[0.407, 0.507, 0.086]</p></td>
<td><p>sparse</p></td>
</tr>
<tr class="row-odd"><td><p>hcr</p></td>
<td class="text-center"><p>3</p></td>
<td class="text-center"><p>1594</p></td>
<td class="text-center"><p>798</p></td>
<td class="text-center"><p>222046</p></td>
<td class="text-center"><p>[0.546, 0.211, 0.243]</p></td>
<td class="text-center"><p>[0.640, 0.167, 0.193]</p></td>
<td><p>sparse</p></td>
</tr>
<tr class="row-even"><td><p>omd</p></td>
<td class="text-center"><p>3</p></td>
<td class="text-center"><p>1839</p></td>
<td class="text-center"><p>787</p></td>
<td class="text-center"><p>199151</p></td>
<td class="text-center"><p>[0.463, 0.271, 0.266]</p></td>
<td class="text-center"><p>[0.437, 0.283, 0.280]</p></td>
<td><p>sparse</p></td>
</tr>
<tr class="row-odd"><td><p>sanders</p></td>
<td class="text-center"><p>3</p></td>
<td class="text-center"><p>2155</p></td>
<td class="text-center"><p>923</p></td>
<td class="text-center"><p>229399</p></td>
<td class="text-center"><p>[0.161, 0.691, 0.148]</p></td>
<td class="text-center"><p>[0.164, 0.688, 0.148]</p></td>
<td><p>sparse</p></td>
</tr>
<tr class="row-even"><td><p>semeval13</p></td>
<td class="text-center"><p>3</p></td>
<td class="text-center"><p>11338</p></td>
<td class="text-center"><p>3813</p></td>
<td class="text-center"><p>1215742</p></td>
<td class="text-center"><p>[0.159, 0.470, 0.372]</p></td>
<td class="text-center"><p>[0.158, 0.430, 0.412]</p></td>
<td><p>sparse</p></td>
</tr>
<tr class="row-odd"><td><p>semeval14</p></td>
<td class="text-center"><p>3</p></td>
<td class="text-center"><p>11338</p></td>
<td class="text-center"><p>1853</p></td>
<td class="text-center"><p>1215742</p></td>
<td class="text-center"><p>[0.159, 0.470, 0.372]</p></td>
<td class="text-center"><p>[0.109, 0.361, 0.530]</p></td>
<td><p>sparse</p></td>
</tr>
<tr class="row-even"><td><p>semeval15</p></td>
<td class="text-center"><p>3</p></td>
<td class="text-center"><p>11338</p></td>
<td class="text-center"><p>2390</p></td>
<td class="text-center"><p>1215742</p></td>
<td class="text-center"><p>[0.159, 0.470, 0.372]</p></td>
<td class="text-center"><p>[0.153, 0.413, 0.434]</p></td>
<td><p>sparse</p></td>
</tr>
<tr class="row-odd"><td><p>semeval16</p></td>
<td class="text-center"><p>3</p></td>
<td class="text-center"><p>8000</p></td>
<td class="text-center"><p>2000</p></td>
<td class="text-center"><p>889504</p></td>
<td class="text-center"><p>[0.157, 0.351, 0.492]</p></td>
<td class="text-center"><p>[0.163, 0.341, 0.497]</p></td>
<td><p>sparse</p></td>
</tr>
<tr class="row-even"><td><p>sst</p></td>
<td class="text-center"><p>3</p></td>
<td class="text-center"><p>2971</p></td>
<td class="text-center"><p>1271</p></td>
<td class="text-center"><p>376132</p></td>
<td class="text-center"><p>[0.261, 0.452, 0.288]</p></td>
<td class="text-center"><p>[0.207, 0.481, 0.312]</p></td>
<td><p>sparse</p></td>
</tr>
<tr class="row-odd"><td><p>wa</p></td>
<td class="text-center"><p>3</p></td>
<td class="text-center"><p>2184</p></td>
<td class="text-center"><p>936</p></td>
<td class="text-center"><p>248563</p></td>
<td class="text-center"><p>[0.305, 0.414, 0.281]</p></td>
<td class="text-center"><p>[0.282, 0.446, 0.272]</p></td>
<td><p>sparse</p></td>
</tr>
<tr class="row-even"><td><p>wb</p></td>
<td class="text-center"><p>3</p></td>
<td class="text-center"><p>4259</p></td>
<td class="text-center"><p>1823</p></td>
<td class="text-center"><p>404333</p></td>
<td class="text-center"><p>[0.270, 0.392, 0.337]</p></td>
<td class="text-center"><p>[0.274, 0.392, 0.335]</p></td>
<td><p>sparse</p></td>
</tr>
</tbody>
</table>
</section>
<section id="uci-machine-learning">
<h2>UCI Machine Learning<a class="headerlink" href="#uci-machine-learning" title="Permalink to this heading"></a></h2>
<p>A set of 32 datasets from the <a class="reference external" href="https://archive.ics.uci.edu/ml/datasets.php">UCI Machine Learning repository</a>
used in:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">Pérez</span><span class="o">-</span><span class="n">Gállego</span><span class="p">,</span> <span class="n">P</span><span class="o">.</span><span class="p">,</span> <span class="n">Quevedo</span><span class="p">,</span> <span class="n">J</span><span class="o">.</span> <span class="n">R</span><span class="o">.</span><span class="p">,</span> <span class="o">&amp;</span> <span class="k">del</span> <span class="n">Coz</span><span class="p">,</span> <span class="n">J</span><span class="o">.</span> <span class="n">J</span><span class="o">.</span> <span class="p">(</span><span class="mi">2017</span><span class="p">)</span><span class="o">.</span>
<span class="n">Using</span> <span class="n">ensembles</span> <span class="k">for</span> <span class="n">problems</span> <span class="k">with</span> <span class="n">characterizable</span> <span class="n">changes</span>
<span class="ow">in</span> <span class="n">data</span> <span class="n">distribution</span><span class="p">:</span> <span class="n">A</span> <span class="n">case</span> <span class="n">study</span> <span class="n">on</span> <span class="n">quantification</span><span class="o">.</span>
<span class="n">Information</span> <span class="n">Fusion</span><span class="p">,</span> <span class="mi">34</span><span class="p">,</span> <span class="mi">87</span><span class="o">-</span><span class="mf">100.</span>
</pre></div>
</div>
<p>The list does not exactly coincide with that used in Pérez-Gállego et al. 2017
since we were unable to find the datasets with ids “diabetes” and “phoneme”.</p>
<p>These dataset can be loaded by calling, e.g.:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_UCIDataset</span><span class="p">(</span><span class="s1">&#39;yeast&#39;</span><span class="p">,</span> <span class="n">verbose</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p>This call will return a <em>Dataset</em> object in which the training and
test splits are randomly drawn, in a stratified manner, from the whole
collection at 70% and 30%, respectively. The <em>verbose=True</em> option indicates
that the dataset description should be printed in standard output.
The original data is not split,
and some papers submit the entire collection to a kFCV validation.
In order to accommodate with these practices, one could first instantiate
the entire collection, and then creating a generator that will return one
training+test dataset at a time, following a kFCV protocol:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="n">collection</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_UCILabelledCollection</span><span class="p">(</span><span class="s2">&quot;yeast&quot;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">data</span> <span class="ow">in</span> <span class="n">qp</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">Dataset</span><span class="o">.</span><span class="n">kFCV</span><span class="p">(</span><span class="n">collection</span><span class="p">,</span> <span class="n">nfolds</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">nrepeats</span><span class="o">=</span><span class="mi">2</span><span class="p">):</span>
<span class="o">...</span>
</pre></div>
</div>
<p>Above code will allow to conduct a 2x5FCV evaluation on the “yeast” dataset.</p>
<p>All datasets come in numerical form (dense matrices); some statistics
are summarized below.</p>
<table class="docutils align-default">
<thead>
<tr class="row-odd"><th class="head"><p>Dataset</p></th>
<th class="head text-center"><p>classes</p></th>
<th class="head text-center"><p>instances</p></th>
<th class="head text-center"><p>features</p></th>
<th class="head text-center"><p>prev</p></th>
<th class="head"><p>type</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>acute.a</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>120</p></td>
<td class="text-center"><p>6</p></td>
<td class="text-center"><p>[0.508, 0.492]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-odd"><td><p>acute.b</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>120</p></td>
<td class="text-center"><p>6</p></td>
<td class="text-center"><p>[0.583, 0.417]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-even"><td><p>balance.1</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>625</p></td>
<td class="text-center"><p>4</p></td>
<td class="text-center"><p>[0.539, 0.461]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-odd"><td><p>balance.2</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>625</p></td>
<td class="text-center"><p>4</p></td>
<td class="text-center"><p>[0.922, 0.078]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-even"><td><p>balance.3</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>625</p></td>
<td class="text-center"><p>4</p></td>
<td class="text-center"><p>[0.539, 0.461]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-odd"><td><p>breast-cancer</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>683</p></td>
<td class="text-center"><p>9</p></td>
<td class="text-center"><p>[0.350, 0.650]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-even"><td><p>cmc.1</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>1473</p></td>
<td class="text-center"><p>9</p></td>
<td class="text-center"><p>[0.573, 0.427]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-odd"><td><p>cmc.2</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>1473</p></td>
<td class="text-center"><p>9</p></td>
<td class="text-center"><p>[0.774, 0.226]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-even"><td><p>cmc.3</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>1473</p></td>
<td class="text-center"><p>9</p></td>
<td class="text-center"><p>[0.653, 0.347]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-odd"><td><p>ctg.1</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>2126</p></td>
<td class="text-center"><p>22</p></td>
<td class="text-center"><p>[0.222, 0.778]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-even"><td><p>ctg.2</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>2126</p></td>
<td class="text-center"><p>22</p></td>
<td class="text-center"><p>[0.861, 0.139]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-odd"><td><p>ctg.3</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>2126</p></td>
<td class="text-center"><p>22</p></td>
<td class="text-center"><p>[0.917, 0.083]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-even"><td><p>german</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>1000</p></td>
<td class="text-center"><p>24</p></td>
<td class="text-center"><p>[0.300, 0.700]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-odd"><td><p>haberman</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>306</p></td>
<td class="text-center"><p>3</p></td>
<td class="text-center"><p>[0.735, 0.265]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-even"><td><p>ionosphere</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>351</p></td>
<td class="text-center"><p>34</p></td>
<td class="text-center"><p>[0.641, 0.359]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-odd"><td><p>iris.1</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>150</p></td>
<td class="text-center"><p>4</p></td>
<td class="text-center"><p>[0.667, 0.333]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-even"><td><p>iris.2</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>150</p></td>
<td class="text-center"><p>4</p></td>
<td class="text-center"><p>[0.667, 0.333]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-odd"><td><p>iris.3</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>150</p></td>
<td class="text-center"><p>4</p></td>
<td class="text-center"><p>[0.667, 0.333]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-even"><td><p>mammographic</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>830</p></td>
<td class="text-center"><p>5</p></td>
<td class="text-center"><p>[0.514, 0.486]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-odd"><td><p>pageblocks.5</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>5473</p></td>
<td class="text-center"><p>10</p></td>
<td class="text-center"><p>[0.979, 0.021]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-even"><td><p>semeion</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>1593</p></td>
<td class="text-center"><p>256</p></td>
<td class="text-center"><p>[0.901, 0.099]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-odd"><td><p>sonar</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>208</p></td>
<td class="text-center"><p>60</p></td>
<td class="text-center"><p>[0.534, 0.466]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-even"><td><p>spambase</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>4601</p></td>
<td class="text-center"><p>57</p></td>
<td class="text-center"><p>[0.606, 0.394]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-odd"><td><p>spectf</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>267</p></td>
<td class="text-center"><p>44</p></td>
<td class="text-center"><p>[0.794, 0.206]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-even"><td><p>tictactoe</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>958</p></td>
<td class="text-center"><p>9</p></td>
<td class="text-center"><p>[0.653, 0.347]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-odd"><td><p>transfusion</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>748</p></td>
<td class="text-center"><p>4</p></td>
<td class="text-center"><p>[0.762, 0.238]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-even"><td><p>wdbc</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>569</p></td>
<td class="text-center"><p>30</p></td>
<td class="text-center"><p>[0.627, 0.373]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-odd"><td><p>wine.1</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>178</p></td>
<td class="text-center"><p>13</p></td>
<td class="text-center"><p>[0.669, 0.331]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-even"><td><p>wine.2</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>178</p></td>
<td class="text-center"><p>13</p></td>
<td class="text-center"><p>[0.601, 0.399]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-odd"><td><p>wine.3</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>178</p></td>
<td class="text-center"><p>13</p></td>
<td class="text-center"><p>[0.730, 0.270]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-even"><td><p>wine-q-red</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>1599</p></td>
<td class="text-center"><p>11</p></td>
<td class="text-center"><p>[0.465, 0.535]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-odd"><td><p>wine-q-white</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>4898</p></td>
<td class="text-center"><p>11</p></td>
<td class="text-center"><p>[0.335, 0.665]</p></td>
<td><p>dense</p></td>
</tr>
<tr class="row-even"><td><p>yeast</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>1484</p></td>
<td class="text-center"><p>8</p></td>
<td class="text-center"><p>[0.711, 0.289]</p></td>
<td><p>dense</p></td>
</tr>
</tbody>
</table>
<section id="issues">
<h3>Issues:<a class="headerlink" href="#issues" title="Permalink to this heading"></a></h3>
<p>All datasets will be downloaded automatically the first time they are requested, and
stored in the <em>quapy_data</em> folder for faster further reuse.
However, some datasets require special actions that at the moment are not fully
automated.</p>
<ul class="simple">
<li><p>Datasets with ids “ctg.1”, “ctg.2”, and “ctg.3” (<em>Cardiotocography Data Set</em>) load
an Excel file, which requires the user to install the <em>xlrd</em> Python module in order
to open it.</p></li>
<li><p>The dataset with id “pageblocks.5” (<em>Page Blocks Classification (5)</em>) needs to
open a “unix compressed file” (extension .Z), which is not directly doable with
standard Pythons packages like gzip or zip. This file would need to be uncompressed using
OS-dependent software manually. Information on how to do it will be printed the first
time the dataset is invoked.</p></li>
</ul>
</section>
</section>
<section id="lequa-datasets">
<h2>LeQua Datasets<a class="headerlink" href="#lequa-datasets" title="Permalink to this heading"></a></h2>
<p>QuaPy also provides the datasets used for the LeQua competition.
In brief, there are 4 tasks (T1A, T1B, T2A, T2B) having to do with text quantification
problems. Tasks T1A and T1B provide documents in vector form, while T2A and T2B provide
raw documents instead.
Tasks T1A and T2A are binary sentiment quantification problems, while T2A and T2B
are multiclass quantification problems consisting of estimating the class prevalence
values of 28 different merchandise products.</p>
<p>Every task consists of a training set, a set of validation samples (for model selection)
and a set of test samples (for evaluation). QuaPy returns this data as a LabelledCollection
(training) and two generation protocols (for validation and test samples), as follows:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">training</span><span class="p">,</span> <span class="n">val_generator</span><span class="p">,</span> <span class="n">test_generator</span> <span class="o">=</span> <span class="n">fetch_lequa2022</span><span class="p">(</span><span class="n">task</span><span class="o">=</span><span class="n">task</span><span class="p">)</span>
</pre></div>
</div>
<p>See the <code class="docutils literal notranslate"><span class="pre">lequa2022_experiments.py</span></code> in the examples folder for further details on how to
carry out experiments using these datasets.</p>
<p>The datasets are downloaded only once, and stored for fast reuse.</p>
<p>Some statistics are summarized below:</p>
<table class="docutils align-default">
<thead>
<tr class="row-odd"><th class="head"><p>Dataset</p></th>
<th class="head text-center"><p>classes</p></th>
<th class="head text-center"><p>train size</p></th>
<th class="head text-center"><p>validation samples</p></th>
<th class="head text-center"><p>test samples</p></th>
<th class="head text-center"><p>docs by sample</p></th>
<th class="head text-center"><p>type</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>T1A</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>5000</p></td>
<td class="text-center"><p>1000</p></td>
<td class="text-center"><p>5000</p></td>
<td class="text-center"><p>250</p></td>
<td class="text-center"><p>vector</p></td>
</tr>
<tr class="row-odd"><td><p>T1B</p></td>
<td class="text-center"><p>28</p></td>
<td class="text-center"><p>20000</p></td>
<td class="text-center"><p>1000</p></td>
<td class="text-center"><p>5000</p></td>
<td class="text-center"><p>1000</p></td>
<td class="text-center"><p>vector</p></td>
</tr>
<tr class="row-even"><td><p>T2A</p></td>
<td class="text-center"><p>2</p></td>
<td class="text-center"><p>5000</p></td>
<td class="text-center"><p>1000</p></td>
<td class="text-center"><p>5000</p></td>
<td class="text-center"><p>250</p></td>
<td class="text-center"><p>text</p></td>
</tr>
<tr class="row-odd"><td><p>T2B</p></td>
<td class="text-center"><p>28</p></td>
<td class="text-center"><p>20000</p></td>
<td class="text-center"><p>1000</p></td>
<td class="text-center"><p>5000</p></td>
<td class="text-center"><p>1000</p></td>
<td class="text-center"><p>text</p></td>
</tr>
</tbody>
</table>
<p>For further details on the datasets, we refer to the original
<a class="reference external" href="https://ceur-ws.org/Vol-3180/paper-146.pdf">paper</a>:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">Esuli</span><span class="p">,</span> <span class="n">A</span><span class="o">.</span><span class="p">,</span> <span class="n">Moreo</span><span class="p">,</span> <span class="n">A</span><span class="o">.</span><span class="p">,</span> <span class="n">Sebastiani</span><span class="p">,</span> <span class="n">F</span><span class="o">.</span><span class="p">,</span> <span class="o">&amp;</span> <span class="n">Sperduti</span><span class="p">,</span> <span class="n">G</span><span class="o">.</span> <span class="p">(</span><span class="mi">2022</span><span class="p">)</span><span class="o">.</span>
<span class="n">A</span> <span class="n">Detailed</span> <span class="n">Overview</span> <span class="n">of</span> <span class="n">LeQua</span><span class="o">@</span> <span class="n">CLEF</span> <span class="mi">2022</span><span class="p">:</span> <span class="n">Learning</span> <span class="n">to</span> <span class="n">Quantify</span><span class="o">.</span>
</pre></div>
</div>
</section>
<section id="adding-custom-datasets">
<h2>Adding Custom Datasets<a class="headerlink" href="#adding-custom-datasets" title="Permalink to this heading"></a></h2>
<p>QuaPy provides data loaders for simple formats dealing with
text, following the format:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">class</span><span class="o">-</span><span class="nb">id</span> \<span class="n">t</span> <span class="n">first</span> <span class="n">document</span><span class="s1">&#39;s pre-processed text </span><span class="se">\n</span>
<span class="n">class</span><span class="o">-</span><span class="nb">id</span> \<span class="n">t</span> <span class="n">second</span> <span class="n">document</span><span class="s1">&#39;s pre-processed text </span><span class="se">\n</span>
<span class="o">...</span>
</pre></div>
</div>
<p>and sparse representations of the form:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">{</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="ow">or</span> <span class="o">+</span><span class="mi">1</span><span class="p">}</span> <span class="n">col</span><span class="p">(</span><span class="nb">int</span><span class="p">):</span><span class="n">val</span><span class="p">(</span><span class="nb">float</span><span class="p">)</span> <span class="n">col</span><span class="p">(</span><span class="nb">int</span><span class="p">):</span><span class="n">val</span><span class="p">(</span><span class="nb">float</span><span class="p">)</span> <span class="o">...</span> \<span class="n">n</span>
<span class="o">...</span>
</pre></div>
</div>
<p>The code in charge in loading a LabelledCollection is:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">load</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">path</span><span class="p">:</span><span class="nb">str</span><span class="p">,</span> <span class="n">loader_func</span><span class="p">:</span><span class="n">callable</span><span class="p">):</span>
<span class="k">return</span> <span class="n">LabelledCollection</span><span class="p">(</span><span class="o">*</span><span class="n">loader_func</span><span class="p">(</span><span class="n">path</span><span class="p">))</span>
</pre></div>
</div>
<p>indicating that any <em>loader_func</em> (e.g., a user-defined one) which
returns valid arguments for initializing a <em>LabelledCollection</em> object will allow
to load any collection. In particular, the <em>LabelledCollection</em> receives as
arguments the instances (as an iterable) and the labels (as an iterable) and,
additionally, the number of classes can be specified (it would otherwise be
inferred from the labels, but that requires at least one positive example for
all classes to be present in the collection).</p>
<p>The same <em>loader_func</em> can be passed to a Dataset, along with two
paths, in order to create a training and test pair of <em>LabelledCollection</em>,
e.g.:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="n">train_path</span> <span class="o">=</span> <span class="s1">&#39;../my_data/train.dat&#39;</span>
<span class="n">test_path</span> <span class="o">=</span> <span class="s1">&#39;../my_data/test.dat&#39;</span>
<span class="k">def</span> <span class="nf">my_custom_loader</span><span class="p">(</span><span class="n">path</span><span class="p">):</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="n">path</span><span class="p">,</span> <span class="s1">&#39;rb&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">fin</span><span class="p">:</span>
<span class="o">...</span>
<span class="k">return</span> <span class="n">instances</span><span class="p">,</span> <span class="n">labels</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">Dataset</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">train_path</span><span class="p">,</span> <span class="n">test_path</span><span class="p">,</span> <span class="n">my_custom_loader</span><span class="p">)</span>
</pre></div>
</div>
<section id="data-processing">
<h3>Data Processing<a class="headerlink" href="#data-processing" title="Permalink to this heading"></a></h3>
<p>QuaPy implements a number of preprocessing functions in the package <em>qp.data.preprocessing</em>, including:</p>
<ul class="simple">
<li><p><em>text2tfidf</em>: tfidf vectorization</p></li>
<li><p><em>reduce_columns</em>: reducing the number of columns based on term frequency</p></li>
<li><p><em>standardize</em>: transforms the column values into z-scores (i.e., subtract the mean and normalizes by the standard deviation, so
that the column values have zero mean and unit variance).</p></li>
<li><p><em>index</em>: transforms textual tokens into lists of numeric ids)</p></li>
</ul>
</section>
</section>
</section>
<div class="clearer"></div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<div>
<h3><a href="index.html">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Datasets</a><ul>
<li><a class="reference internal" href="#reviews-datasets">Reviews Datasets</a></li>
<li><a class="reference internal" href="#twitter-sentiment-datasets">Twitter Sentiment Datasets</a></li>
<li><a class="reference internal" href="#uci-machine-learning">UCI Machine Learning</a><ul>
<li><a class="reference internal" href="#issues">Issues:</a></li>
</ul>
</li>
<li><a class="reference internal" href="#lequa-datasets">LeQua Datasets</a></li>
<li><a class="reference internal" href="#adding-custom-datasets">Adding Custom Datasets</a><ul>
<li><a class="reference internal" href="#data-processing">Data Processing</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
<div>
<h4>Previous topic</h4>
<p class="topless"><a href="Installation.html"
title="previous chapter">Installation</a></p>
</div>
<div>
<h4>Next topic</h4>
<p class="topless"><a href="Evaluation.html"
title="next chapter">Evaluation</a></p>
</div>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/Datasets.md.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>document.getElementById('searchbox').style.display = "block"</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="Evaluation.html" title="Evaluation"
>next</a> |</li>
<li class="right" >
<a href="Installation.html" title="Installation"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Datasets</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2021, Alejandro Moreo.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 5.3.0.
</div>
</body>
</html>

View File

@ -1,281 +0,0 @@
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<title>Evaluation &#8212; QuaPy 0.1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/bizstyle.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Protocols" href="Protocols.html" />
<link rel="prev" title="Datasets" href="Datasets.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="Protocols.html" title="Protocols"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="Datasets.html" title="Datasets"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Evaluation</a></li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<section id="evaluation">
<h1>Evaluation<a class="headerlink" href="#evaluation" title="Permalink to this heading"></a></h1>
<p>Quantification is an appealing tool in scenarios of dataset shift,
and particularly in scenarios of prior-probability shift.
That is, the interest in estimating the class prevalences arises
under the belief that those class prevalences might have changed
with respect to the ones observed during training.
In other words, one could simply return the training prevalence
as a predictor of the test prevalence if this change is assumed
to be unlikely (as is the case in general scenarios of
machine learning governed by the iid assumption).
In brief, quantification requires dedicated evaluation protocols,
which are implemented in QuaPy and explained here.</p>
<section id="error-measures">
<h2>Error Measures<a class="headerlink" href="#error-measures" title="Permalink to this heading"></a></h2>
<p>The module quapy.error implements the following error measures for quantification:</p>
<ul class="simple">
<li><p><em>mae</em>: mean absolute error</p></li>
<li><p><em>mrae</em>: mean relative absolute error</p></li>
<li><p><em>mse</em>: mean squared error</p></li>
<li><p><em>mkld</em>: mean Kullback-Leibler Divergence</p></li>
<li><p><em>mnkld</em>: mean normalized Kullback-Leibler Divergence</p></li>
</ul>
<p>Functions <em>ae</em>, <em>rae</em>, <em>se</em>, <em>kld</em>, and <em>nkld</em> are also available,
which return the individual errors (i.e., without averaging the whole).</p>
<p>Some errors of classification are also available:</p>
<ul class="simple">
<li><p><em>acce</em>: accuracy error (1-accuracy)</p></li>
<li><p><em>f1e</em>: F-1 score error (1-F1 score)</p></li>
</ul>
<p>The error functions implement the following interface, e.g.:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">mae</span><span class="p">(</span><span class="n">true_prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">)</span>
</pre></div>
</div>
<p>in which the first argument is a ndarray containing the true
prevalences, and the second argument is another ndarray with
the estimations produced by some method.</p>
<p>Some error functions, e.g., <em>mrae</em>, <em>mkld</em>, and <em>mnkld</em>, are
smoothed for numerical stability. In those cases, there is a
third argument, e.g.:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">mrae</span><span class="p">(</span><span class="n">true_prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span> <span class="o">...</span>
</pre></div>
</div>
<p>indicating the value for the smoothing parameter epsilon.
Traditionally, this value is set to 1/(2T) in past literature,
with T the sampling size. One could either pass this value
to the function each time, or to set a QuaPys environment
variable <em>SAMPLE_SIZE</em> once, and omit this argument
thereafter (recommended);
e.g.:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">qp</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s1">&#39;SAMPLE_SIZE&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mi">100</span> <span class="c1"># once for all</span>
<span class="n">true_prev</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">])</span> <span class="c1"># let&#39;s assume 3 classes</span>
<span class="n">estim_prev</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">([</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">])</span>
<span class="n">error</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">error</span><span class="o">.</span><span class="n">mrae</span><span class="p">(</span><span class="n">true_prev</span><span class="p">,</span> <span class="n">estim_prev</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;mrae(</span><span class="si">{</span><span class="n">true_prev</span><span class="si">}</span><span class="s1">, </span><span class="si">{</span><span class="n">estim_prev</span><span class="si">}</span><span class="s1">) = </span><span class="si">{</span><span class="n">error</span><span class="si">:</span><span class="s1">.3f</span><span class="si">}</span><span class="s1">&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>will print:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">mrae</span><span class="p">([</span><span class="mf">0.500</span><span class="p">,</span> <span class="mf">0.300</span><span class="p">,</span> <span class="mf">0.200</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.100</span><span class="p">,</span> <span class="mf">0.300</span><span class="p">,</span> <span class="mf">0.600</span><span class="p">])</span> <span class="o">=</span> <span class="mf">0.914</span>
</pre></div>
</div>
<p>Finally, it is possible to instantiate QuaPys quantification
error functions from strings using, e.g.:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">error_function</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">error</span><span class="o">.</span><span class="n">from_name</span><span class="p">(</span><span class="s1">&#39;mse&#39;</span><span class="p">)</span>
<span class="n">error</span> <span class="o">=</span> <span class="n">error_function</span><span class="p">(</span><span class="n">true_prev</span><span class="p">,</span> <span class="n">estim_prev</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="evaluation-protocols">
<h2>Evaluation Protocols<a class="headerlink" href="#evaluation-protocols" title="Permalink to this heading"></a></h2>
<p>An <em>evaluation protocol</em> is an evaluation procedure that uses
one specific <em>sample generation procotol</em> to genereate many
samples, typically characterized by widely varying amounts of
<em>shift</em> with respect to the original distribution, that are then
used to evaluate the performance of a (trained) quantifier.
These protocols are explained in more detail in a dedicated <a class="reference internal" href="Protocols.html"><span class="doc std std-doc">entry
in the wiki</span></a>. For the moment being, let us assume we already have
chosen and instantiated one specific such protocol, that we here
simply call <em>prot</em>. Let also assume our model is called
<em>quantifier</em> and that our evaluatio measure of choice is
<em>mae</em>. The evaluation comes down to:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">mae</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">evaluation</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">quantifier</span><span class="p">,</span> <span class="n">protocol</span><span class="o">=</span><span class="n">prot</span><span class="p">,</span> <span class="n">error_metric</span><span class="o">=</span><span class="s1">&#39;mae&#39;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;MAE = </span><span class="si">{</span><span class="n">mae</span><span class="si">:</span><span class="s1">.4f</span><span class="si">}</span><span class="s1">&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>It is often desirable to evaluate our system using more than one
single evaluatio measure. In this case, it is convenient to generate
a <em>report</em>. A report in QuaPy is a dataframe accounting for all the
true prevalence values with their corresponding prevalence values
as estimated by the quantifier, along with the error each has given
rise.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">report</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">evaluation</span><span class="o">.</span><span class="n">evaluation_report</span><span class="p">(</span><span class="n">quantifier</span><span class="p">,</span> <span class="n">protocol</span><span class="o">=</span><span class="n">prot</span><span class="p">,</span> <span class="n">error_metrics</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;mae&#39;</span><span class="p">,</span> <span class="s1">&#39;mrae&#39;</span><span class="p">,</span> <span class="s1">&#39;mkld&#39;</span><span class="p">])</span>
</pre></div>
</div>
<p>From a pandas dataframe, it is straightforward to visualize all the results,
and compute the averaged values, e.g.:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">pd</span><span class="o">.</span><span class="n">set_option</span><span class="p">(</span><span class="s1">&#39;display.expand_frame_repr&#39;</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
<span class="n">report</span><span class="p">[</span><span class="s1">&#39;estim-prev&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">report</span><span class="p">[</span><span class="s1">&#39;estim-prev&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">strprev</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">report</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Averaged values:&#39;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">report</span><span class="o">.</span><span class="n">mean</span><span class="p">())</span>
</pre></div>
</div>
<p>This will produce an output like:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span> <span class="n">true</span><span class="o">-</span><span class="n">prev</span> <span class="n">estim</span><span class="o">-</span><span class="n">prev</span> <span class="n">mae</span> <span class="n">mrae</span> <span class="n">mkld</span>
<span class="mi">0</span> <span class="p">[</span><span class="mf">0.308</span><span class="p">,</span> <span class="mf">0.692</span><span class="p">]</span> <span class="p">[</span><span class="mf">0.314</span><span class="p">,</span> <span class="mf">0.686</span><span class="p">]</span> <span class="mf">0.005649</span> <span class="mf">0.013182</span> <span class="mf">0.000074</span>
<span class="mi">1</span> <span class="p">[</span><span class="mf">0.896</span><span class="p">,</span> <span class="mf">0.104</span><span class="p">]</span> <span class="p">[</span><span class="mf">0.909</span><span class="p">,</span> <span class="mf">0.091</span><span class="p">]</span> <span class="mf">0.013145</span> <span class="mf">0.069323</span> <span class="mf">0.000985</span>
<span class="mi">2</span> <span class="p">[</span><span class="mf">0.848</span><span class="p">,</span> <span class="mf">0.152</span><span class="p">]</span> <span class="p">[</span><span class="mf">0.809</span><span class="p">,</span> <span class="mf">0.191</span><span class="p">]</span> <span class="mf">0.039063</span> <span class="mf">0.149806</span> <span class="mf">0.005175</span>
<span class="mi">3</span> <span class="p">[</span><span class="mf">0.016</span><span class="p">,</span> <span class="mf">0.984</span><span class="p">]</span> <span class="p">[</span><span class="mf">0.033</span><span class="p">,</span> <span class="mf">0.967</span><span class="p">]</span> <span class="mf">0.017236</span> <span class="mf">0.487529</span> <span class="mf">0.005298</span>
<span class="mi">4</span> <span class="p">[</span><span class="mf">0.728</span><span class="p">,</span> <span class="mf">0.272</span><span class="p">]</span> <span class="p">[</span><span class="mf">0.751</span><span class="p">,</span> <span class="mf">0.249</span><span class="p">]</span> <span class="mf">0.022769</span> <span class="mf">0.057146</span> <span class="mf">0.001350</span>
<span class="o">...</span> <span class="o">...</span> <span class="o">...</span> <span class="o">...</span> <span class="o">...</span> <span class="o">...</span>
<span class="mi">4995</span> <span class="p">[</span><span class="mf">0.72</span><span class="p">,</span> <span class="mf">0.28</span><span class="p">]</span> <span class="p">[</span><span class="mf">0.698</span><span class="p">,</span> <span class="mf">0.302</span><span class="p">]</span> <span class="mf">0.021752</span> <span class="mf">0.053631</span> <span class="mf">0.001133</span>
<span class="mi">4996</span> <span class="p">[</span><span class="mf">0.868</span><span class="p">,</span> <span class="mf">0.132</span><span class="p">]</span> <span class="p">[</span><span class="mf">0.888</span><span class="p">,</span> <span class="mf">0.112</span><span class="p">]</span> <span class="mf">0.020490</span> <span class="mf">0.088230</span> <span class="mf">0.001985</span>
<span class="mi">4997</span> <span class="p">[</span><span class="mf">0.292</span><span class="p">,</span> <span class="mf">0.708</span><span class="p">]</span> <span class="p">[</span><span class="mf">0.298</span><span class="p">,</span> <span class="mf">0.702</span><span class="p">]</span> <span class="mf">0.006149</span> <span class="mf">0.014788</span> <span class="mf">0.000090</span>
<span class="mi">4998</span> <span class="p">[</span><span class="mf">0.24</span><span class="p">,</span> <span class="mf">0.76</span><span class="p">]</span> <span class="p">[</span><span class="mf">0.220</span><span class="p">,</span> <span class="mf">0.780</span><span class="p">]</span> <span class="mf">0.019950</span> <span class="mf">0.054309</span> <span class="mf">0.001127</span>
<span class="mi">4999</span> <span class="p">[</span><span class="mf">0.948</span><span class="p">,</span> <span class="mf">0.052</span><span class="p">]</span> <span class="p">[</span><span class="mf">0.965</span><span class="p">,</span> <span class="mf">0.035</span><span class="p">]</span> <span class="mf">0.016941</span> <span class="mf">0.165776</span> <span class="mf">0.003538</span>
<span class="p">[</span><span class="mi">5000</span> <span class="n">rows</span> <span class="n">x</span> <span class="mi">5</span> <span class="n">columns</span><span class="p">]</span>
<span class="n">Averaged</span> <span class="n">values</span><span class="p">:</span>
<span class="n">mae</span> <span class="mf">0.023588</span>
<span class="n">mrae</span> <span class="mf">0.108779</span>
<span class="n">mkld</span> <span class="mf">0.003631</span>
<span class="n">dtype</span><span class="p">:</span> <span class="n">float64</span>
<span class="n">Process</span> <span class="n">finished</span> <span class="k">with</span> <span class="n">exit</span> <span class="n">code</span> <span class="mi">0</span>
</pre></div>
</div>
<p>Alternatively, we can simply generate all the predictions by:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">true_prevs</span><span class="p">,</span> <span class="n">estim_prevs</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">evaluation</span><span class="o">.</span><span class="n">prediction</span><span class="p">(</span><span class="n">quantifier</span><span class="p">,</span> <span class="n">protocol</span><span class="o">=</span><span class="n">prot</span><span class="p">)</span>
</pre></div>
</div>
<p>All the evaluation functions implement specific optimizations for speeding-up
the evaluation of aggregative quantifiers (i.e., of instances of <em>AggregativeQuantifier</em>).
The optimization comes down to generating classification predictions (either crisp or soft)
only once for the entire test set, and then applying the sampling procedure to the
predictions, instead of generating samples of instances and then computing the
classification predictions every time. This is only possible when the protocol
is an instance of <em>OnLabelledCollectionProtocol</em>. The optimization is only
carried out when the number of classification predictions thus generated would be
smaller than the number of predictions required for the entire protocol; e.g.,
if the original dataset contains 1M instances, but the protocol is such that it would
at most generate 20 samples of 100 instances, then it would be preferable to postpone the
classification for each sample. This behaviour is indicated by setting
<em>aggr_speedup=”auto”</em>. Conversely, when indicating <em>aggr_speedup=”force”</em> QuaPy will
precompute all the predictions irrespectively of the number of instances and number of samples.
Finally, this can be deactivated by setting <em>aggr_speedup=False</em>. Note that this optimization
is not only applied for the final evaluation, but also for the internal evaluations carried
out during <em>model selection</em>. Since these are typically many, the heuristic can help reduce the
execution time a lot.</p>
</section>
</section>
<div class="clearer"></div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<div>
<h3><a href="index.html">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Evaluation</a><ul>
<li><a class="reference internal" href="#error-measures">Error Measures</a></li>
<li><a class="reference internal" href="#evaluation-protocols">Evaluation Protocols</a></li>
</ul>
</li>
</ul>
</div>
<div>
<h4>Previous topic</h4>
<p class="topless"><a href="Datasets.html"
title="previous chapter">Datasets</a></p>
</div>
<div>
<h4>Next topic</h4>
<p class="topless"><a href="Protocols.html"
title="next chapter">Protocols</a></p>
</div>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/Evaluation.md.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>document.getElementById('searchbox').style.display = "block"</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="Protocols.html" title="Protocols"
>next</a> |</li>
<li class="right" >
<a href="Datasets.html" title="Datasets"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Evaluation</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2021, Alejandro Moreo.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 5.3.0.
</div>
</body>
</html>

View File

@ -1,178 +0,0 @@
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<title>Installation &#8212; QuaPy 0.1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/bizstyle.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Datasets" href="Datasets.html" />
<link rel="prev" title="Welcome to QuaPys documentation!" href="index.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="Datasets.html" title="Datasets"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="index.html" title="Welcome to QuaPys documentation!"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Installation</a></li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<section id="installation">
<h1>Installation<a class="headerlink" href="#installation" title="Permalink to this heading"></a></h1>
<p>QuaPy can be easily installed via <cite>pip</cite></p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">pip</span> <span class="n">install</span> <span class="n">quapy</span>
</pre></div>
</div>
<p>See <a class="reference external" href="https://pypi.org/project/QuaPy/">pip page</a> for older versions.</p>
<section id="requirements">
<h2>Requirements<a class="headerlink" href="#requirements" title="Permalink to this heading"></a></h2>
<ul class="simple">
<li><p>scikit-learn, numpy, scipy</p></li>
<li><p>pytorch (for QuaNet)</p></li>
<li><p>svmperf patched for quantification (see below)</p></li>
<li><p>joblib</p></li>
<li><p>tqdm</p></li>
<li><p>pandas, xlrd</p></li>
<li><p>matplotlib</p></li>
</ul>
</section>
<section id="svm-perf-with-quantification-oriented-losses">
<h2>SVM-perf with quantification-oriented losses<a class="headerlink" href="#svm-perf-with-quantification-oriented-losses" title="Permalink to this heading"></a></h2>
<p>In order to run experiments involving SVM(Q), SVM(KLD), SVM(NKLD),
SVM(AE), or SVM(RAE), you have to first download the
<a class="reference external" href="http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html">svmperf</a>
package, apply the patch
<a class="reference external" href="https://github.com/HLT-ISTI/QuaPy/blob/master/svm-perf-quantification-ext.patch">svm-perf-quantification-ext.patch</a>,
and compile the sources.
The script
<a class="reference external" href="https://github.com/HLT-ISTI/QuaPy/blob/master/prepare_svmperf.sh">prepare_svmperf.sh</a>,
does all the job. Simply run:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="o">./</span><span class="n">prepare_svmperf</span><span class="o">.</span><span class="n">sh</span>
</pre></div>
</div>
<p>The resulting directory <cite>./svm_perf_quantification</cite> contains the
patched version of <cite>svmperf</cite> with quantification-oriented losses.</p>
<p>The
<a class="reference external" href="https://github.com/HLT-ISTI/QuaPy/blob/master/svm-perf-quantification-ext.patch">svm-perf-quantification-ext.patch</a>
is an extension of the patch made available by
<a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/2700406?casa_token=8D2fHsGCVn0AAAAA:ZfThYOvrzWxMGfZYlQW_y8Cagg-o_l6X_PcF09mdETQ4Tu7jK98mxFbGSXp9ZSO14JkUIYuDGFG0">Esuli et al. 2015</a>
that allows SVMperf to optimize for
the <cite>Q</cite> measure as proposed by
<a class="reference external" href="https://www.sciencedirect.com/science/article/abs/pii/S003132031400291X">Barranquero et al. 2015</a>
and for the <cite>KLD</cite> and <cite>NKLD</cite> as proposed by
<a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/2700406?casa_token=8D2fHsGCVn0AAAAA:ZfThYOvrzWxMGfZYlQW_y8Cagg-o_l6X_PcF09mdETQ4Tu7jK98mxFbGSXp9ZSO14JkUIYuDGFG0">Esuli et al. 2015</a>
for quantification.
This patch extends the former by also allowing SVMperf to optimize for
<cite>AE</cite> and <cite>RAE</cite>.</p>
</section>
</section>
<div class="clearer"></div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<div>
<h3><a href="index.html">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Installation</a><ul>
<li><a class="reference internal" href="#requirements">Requirements</a></li>
<li><a class="reference internal" href="#svm-perf-with-quantification-oriented-losses">SVM-perf with quantification-oriented losses</a></li>
</ul>
</li>
</ul>
</div>
<div>
<h4>Previous topic</h4>
<p class="topless"><a href="index.html"
title="previous chapter">Welcome to QuaPys documentation!</a></p>
</div>
<div>
<h4>Next topic</h4>
<p class="topless"><a href="Datasets.html"
title="next chapter">Datasets</a></p>
</div>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/Installation.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>document.getElementById('searchbox').style.display = "block"</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="Datasets.html" title="Datasets"
>next</a> |</li>
<li class="right" >
<a href="index.html" title="Welcome to QuaPys documentation!"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Installation</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2021, Alejandro Moreo.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 5.3.0.
</div>
</body>
</html>

View File

@ -1,539 +0,0 @@
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<title>Quantification Methods &#8212; QuaPy 0.1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/bizstyle.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Model Selection" href="Model-Selection.html" />
<link rel="prev" title="Protocols" href="Protocols.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="Model-Selection.html" title="Model Selection"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="Protocols.html" title="Protocols"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Quantification Methods</a></li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<section id="quantification-methods">
<h1>Quantification Methods<a class="headerlink" href="#quantification-methods" title="Permalink to this heading"></a></h1>
<p>Quantification methods can be categorized as belonging to
<em>aggregative</em> and <em>non-aggregative</em> groups.
Most methods included in QuaPy at the moment are of type <em>aggregative</em>
(though we plan to add many more methods in the near future), i.e.,
are methods characterized by the fact that
quantification is performed as an aggregation function of the individual
products of classification.</p>
<p>Any quantifier in QuaPy shoud extend the class <em>BaseQuantifier</em>,
and implement some abstract methods:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span> <span class="nd">@abstractmethod</span>
<span class="k">def</span> <span class="nf">fit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">:</span> <span class="n">LabelledCollection</span><span class="p">):</span> <span class="o">...</span>
<span class="nd">@abstractmethod</span>
<span class="k">def</span> <span class="nf">quantify</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">instances</span><span class="p">):</span> <span class="o">...</span>
</pre></div>
</div>
<p>The meaning of those functions should be familiar to those
used to work with scikit-learn since the class structure of QuaPy
is directly inspired by scikit-learns <em>Estimators</em>. Functions
<em>fit</em> and <em>quantify</em> are used to train the model and to provide
class estimations (the reason why
scikit-learn structure has not been adopted <em>as is</em> in QuaPy responds to
the fact that scikit-learns <em>predict</em> function is expected to return
one output for each input element e.g., a predicted label for each
instance in a sample while in quantification the output for a sample
is one single array of class prevalences).
Quantifiers also extend from scikit-learns <code class="docutils literal notranslate"><span class="pre">BaseEstimator</span></code>, in order
to simplify the use of <em>set_params</em> and <em>get_params</em> used in
<a class="reference external" href="https://github.com/HLT-ISTI/QuaPy/wiki/Model-Selection">model selector</a>.</p>
<section id="aggregative-methods">
<h2>Aggregative Methods<a class="headerlink" href="#aggregative-methods" title="Permalink to this heading"></a></h2>
<p>All quantification methods are implemented as part of the
<em>qp.method</em> package. In particular, <em>aggregative</em> methods are defined in
<em>qp.method.aggregative</em>, and extend <em>AggregativeQuantifier(BaseQuantifier)</em>.
The methods that any <em>aggregative</em> quantifier must implement are:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span> <span class="nd">@abstractmethod</span>
<span class="k">def</span> <span class="nf">fit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">:</span> <span class="n">LabelledCollection</span><span class="p">,</span> <span class="n">fit_learner</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span> <span class="o">...</span>
<span class="nd">@abstractmethod</span>
<span class="k">def</span> <span class="nf">aggregate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">classif_predictions</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">):</span> <span class="o">...</span>
</pre></div>
</div>
<p>since, as mentioned before, aggregative methods base their prediction on the
individual predictions of a classifier. Indeed, a default implementation
of <em>BaseQuantifier.quantify</em> is already provided, which looks like:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span> <span class="k">def</span> <span class="nf">quantify</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">instances</span><span class="p">):</span>
<span class="n">classif_predictions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">classify</span><span class="p">(</span><span class="n">instances</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">aggregate</span><span class="p">(</span><span class="n">classif_predictions</span><span class="p">)</span>
</pre></div>
</div>
<p>Aggregative quantifiers are expected to maintain a classifier (which is
accessed through the <em>&#64;property</em> <em>classifier</em>). This classifier is
given as input to the quantifier, and can be already fit
on external data (in which case, the <em>fit_learner</em> argument should
be set to False), or be fit by the quantifiers fit (default).</p>
<p>Another class of <em>aggregative</em> methods are the <em>probabilistic</em>
aggregative methods, that should inherit from the abstract class
<em>AggregativeProbabilisticQuantifier(AggregativeQuantifier)</em>.
The particularity of <em>probabilistic</em> aggregative methods (w.r.t.
non-probabilistic ones), is that the default quantifier is defined
in terms of the posterior probabilities returned by a probabilistic
classifier, and not by the crisp decisions of a hard classifier.
In any case, the interface <em>classify(instances)</em> remains unchanged.</p>
<p>One advantage of <em>aggregative</em> methods (either probabilistic or not)
is that the evaluation according to any sampling procedure (e.g.,
the <a class="reference external" href="https://github.com/HLT-ISTI/QuaPy/wiki/Evaluation">artificial sampling protocol</a>)
can be achieved very efficiently, since the entire set can be pre-classified
once, and the quantification estimations for different samples can directly
reuse these predictions, without requiring to classify each element every time.
QuaPy leverages this property to speed-up any procedure having to do with
quantification over samples, as is customarily done in model selection or
in evaluation.</p>
<section id="the-classify-count-variants">
<h3>The Classify &amp; Count variants<a class="headerlink" href="#the-classify-count-variants" title="Permalink to this heading"></a></h3>
<p>QuaPy implements the four CC variants, i.e.:</p>
<ul class="simple">
<li><p><em>CC</em> (Classify &amp; Count), the simplest aggregative quantifier; one that
simply relies on the label predictions of a classifier to deliver class estimates.</p></li>
<li><p><em>ACC</em> (Adjusted Classify &amp; Count), the adjusted variant of CC.</p></li>
<li><p><em>PCC</em> (Probabilistic Classify &amp; Count), the probabilistic variant of CC that
relies on the soft estimations (or posterior probabilities) returned by a (probabilistic) classifier.</p></li>
<li><p><em>PACC</em> (Probabilistic Adjusted Classify &amp; Count), the adjusted variant of PCC.</p></li>
</ul>
<p>The following code serves as a complete example using CC equipped
with a SVM as the classifier:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="kn">import</span> <span class="nn">quapy.functional</span> <span class="k">as</span> <span class="nn">F</span>
<span class="kn">from</span> <span class="nn">sklearn.svm</span> <span class="kn">import</span> <span class="n">LinearSVC</span>
<span class="n">training</span><span class="p">,</span> <span class="n">test</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_twitter</span><span class="p">(</span><span class="s1">&#39;hcr&#39;</span><span class="p">,</span> <span class="n">pickle</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span><span class="o">.</span><span class="n">train_test</span>
<span class="c1"># instantiate a classifier learner, in this case a SVM</span>
<span class="n">svm</span> <span class="o">=</span> <span class="n">LinearSVC</span><span class="p">()</span>
<span class="c1"># instantiate a Classify &amp; Count with the SVM</span>
<span class="c1"># (an alias is available in qp.method.aggregative.ClassifyAndCount)</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">method</span><span class="o">.</span><span class="n">aggregative</span><span class="o">.</span><span class="n">CC</span><span class="p">(</span><span class="n">svm</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">training</span><span class="p">)</span>
<span class="n">estim_prevalence</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">quantify</span><span class="p">(</span><span class="n">test</span><span class="o">.</span><span class="n">instances</span><span class="p">)</span>
</pre></div>
</div>
<p>The same code could be used to instantiate an ACC, by simply replacing
the instantiation of the model with:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">model</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">method</span><span class="o">.</span><span class="n">aggregative</span><span class="o">.</span><span class="n">ACC</span><span class="p">(</span><span class="n">svm</span><span class="p">)</span>
</pre></div>
</div>
<p>Note that the adjusted variants (ACC and PACC) need to estimate
some parameters for performing the adjustment (e.g., the
<em>true positive rate</em> and the <em>false positive rate</em> in case of
binary classification) that are estimated on a validation split
of the labelled set. In this case, the <strong>init</strong> method of
ACC defines an additional parameter, <em>val_split</em> which, by
default, is set to 0.4 and so, the 40% of the labelled data
will be used for estimating the parameters for adjusting the
predictions. This parameters can also be set with an integer,
indicating that the parameters should be estimated by means of
<em>k</em>-fold cross-validation, for which the integer indicates the
number <em>k</em> of folds. Finally, <em>val_split</em> can be set to a
specific held-out validation set (i.e., an instance of <em>LabelledCollection</em>).</p>
<p>The specification of <em>val_split</em> can be
postponed to the invokation of the fit method (if <em>val_split</em> was also
set in the constructor, the one specified at fit time would prevail),
e.g.:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">model</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">method</span><span class="o">.</span><span class="n">aggregative</span><span class="o">.</span><span class="n">ACC</span><span class="p">(</span><span class="n">svm</span><span class="p">)</span>
<span class="c1"># perform 5-fold cross validation for estimating ACC&#39;s parameters</span>
<span class="c1"># (overrides the default val_split=0.4 in the constructor)</span>
<span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">training</span><span class="p">,</span> <span class="n">val_split</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
</pre></div>
</div>
<p>The following code illustrates the case in which PCC is used:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">model</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">method</span><span class="o">.</span><span class="n">aggregative</span><span class="o">.</span><span class="n">PCC</span><span class="p">(</span><span class="n">svm</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">training</span><span class="p">)</span>
<span class="n">estim_prevalence</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">quantify</span><span class="p">(</span><span class="n">test</span><span class="o">.</span><span class="n">instances</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;classifier:&#39;</span><span class="p">,</span> <span class="n">model</span><span class="o">.</span><span class="n">classifier</span><span class="p">)</span>
</pre></div>
</div>
<p>In this case, QuaPy will print:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">The</span> <span class="n">learner</span> <span class="n">LinearSVC</span> <span class="n">does</span> <span class="ow">not</span> <span class="n">seem</span> <span class="n">to</span> <span class="n">be</span> <span class="n">probabilistic</span><span class="o">.</span> <span class="n">The</span> <span class="n">learner</span> <span class="n">will</span> <span class="n">be</span> <span class="n">calibrated</span><span class="o">.</span>
<span class="n">classifier</span><span class="p">:</span> <span class="n">CalibratedClassifierCV</span><span class="p">(</span><span class="n">base_estimator</span><span class="o">=</span><span class="n">LinearSVC</span><span class="p">(),</span> <span class="n">cv</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
</pre></div>
</div>
<p>The first output indicates that the learner (<em>LinearSVC</em> in this case)
is not a probabilistic classifier (i.e., it does not implement the
<em>predict_proba</em> method) and so, the classifier will be converted to
a probabilistic one through <a class="reference external" href="https://scikit-learn.org/stable/modules/calibration.html">calibration</a>.
As a result, the classifier that is printed in the second line points
to a <em>CalibratedClassifier</em> instance. Note that calibration can only
be applied to hard classifiers when <em>fit_learner=True</em>; an exception
will be raised otherwise.</p>
<p>Lastly, everything we said aboud ACC and PCC
applies to PACC as well.</p>
</section>
<section id="expectation-maximization-emq">
<h3>Expectation Maximization (EMQ)<a class="headerlink" href="#expectation-maximization-emq" title="Permalink to this heading"></a></h3>
<p>The Expectation Maximization Quantifier (EMQ), also known as
the SLD, is available at <em>qp.method.aggregative.EMQ</em> or via the
alias <em>qp.method.aggregative.ExpectationMaximizationQuantifier</em>.
The method is described in:</p>
<p><em>Saerens, M., Latinne, P., and Decaestecker, C. (2002). Adjusting the outputs of a classifier
to new a priori probabilities: A simple procedure. Neural Computation, 14(1):2141.</em></p>
<p>EMQ works with a probabilistic classifier (if the classifier
given as input is a hard one, a calibration will be attempted).
Although this method was originally proposed for improving the
posterior probabilities of a probabilistic classifier, and not
for improving the estimation of prior probabilities, EMQ ranks
almost always among the most effective quantifiers in the
experiments we have carried out.</p>
<p>An example of use can be found below:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <span class="n">LogisticRegression</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_twitter</span><span class="p">(</span><span class="s1">&#39;hcr&#39;</span><span class="p">,</span> <span class="n">pickle</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">method</span><span class="o">.</span><span class="n">aggregative</span><span class="o">.</span><span class="n">EMQ</span><span class="p">(</span><span class="n">LogisticRegression</span><span class="p">())</span>
<span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">training</span><span class="p">)</span>
<span class="n">estim_prevalence</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">quantify</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">test</span><span class="o">.</span><span class="n">instances</span><span class="p">)</span>
</pre></div>
</div>
<p><em>New in v0.1.7</em>: EMQ now accepts two new parameters in the construction method, namely
<em>exact_train_prev</em> which allows to use the true training prevalence as the departing
prevalence estimation (default behaviour), or instead an approximation of it as
suggested by <a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. (2020)</a>
(by setting <em>exact_train_prev=False</em>).
The other parameter is <em>recalib</em> which allows to indicate a calibration method, among those
proposed by <a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. (2020)</a>,
including the Bias-Corrected Temperature Scaling, Vector Scaling, etc.
See the API documentation for further details.</p>
</section>
<section id="hellinger-distance-y-hdy">
<h3>Hellinger Distance y (HDy)<a class="headerlink" href="#hellinger-distance-y-hdy" title="Permalink to this heading"></a></h3>
<p>Implementation of the method based on the Hellinger Distance y (HDy) proposed by
<a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S0020025512004069">González-Castro, V., Alaiz-Rodrı́guez, R., and Alegre, E. (2013). Class distribution
estimation based on the Hellinger distance. Information Sciences, 218:146164.</a></p>
<p>It is implemented in <em>qp.method.aggregative.HDy</em> (also accessible
through the allias <em>qp.method.aggregative.HellingerDistanceY</em>).
This method works with a probabilistic classifier (hard classifiers
can be used as well and will be calibrated) and requires a validation
set to estimate parameter for the mixture model. Just like
ACC and PACC, this quantifier receives a <em>val_split</em> argument
in the constructor (or in the fit method, in which case the previous
value is overridden) that can either be a float indicating the proportion
of training data to be taken as the validation set (in a random
stratified split), or a validation set (i.e., an instance of
<em>LabelledCollection</em>) itself.</p>
<p>HDy was proposed as a binary classifier and the implementation
provided in QuaPy accepts only binary datasets.</p>
<p>The following code shows an example of use:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <span class="n">LogisticRegression</span>
<span class="c1"># load a binary dataset</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_reviews</span><span class="p">(</span><span class="s1">&#39;hp&#39;</span><span class="p">,</span> <span class="n">pickle</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">qp</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">preprocessing</span><span class="o">.</span><span class="n">text2tfidf</span><span class="p">(</span><span class="n">dataset</span><span class="p">,</span> <span class="n">min_df</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">method</span><span class="o">.</span><span class="n">aggregative</span><span class="o">.</span><span class="n">HDy</span><span class="p">(</span><span class="n">LogisticRegression</span><span class="p">())</span>
<span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">training</span><span class="p">)</span>
<span class="n">estim_prevalence</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">quantify</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">test</span><span class="o">.</span><span class="n">instances</span><span class="p">)</span>
</pre></div>
</div>
<p><em>New in v0.1.7:</em> QuaPy now provides an implementation of the generalized
“Distribution Matching” approaches for multiclass, inspired by the framework
of <a class="reference external" href="https://arxiv.org/abs/1606.00868">Firat (2016)</a>. One can instantiate
a variant of HDy for multiclass quantification as follows:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">mutliclassHDy</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">method</span><span class="o">.</span><span class="n">aggregative</span><span class="o">.</span><span class="n">DistributionMatching</span><span class="p">(</span><span class="n">classifier</span><span class="o">=</span><span class="n">LogisticRegression</span><span class="p">(),</span> <span class="n">divergence</span><span class="o">=</span><span class="s1">&#39;HD&#39;</span><span class="p">,</span> <span class="n">cdf</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
</pre></div>
</div>
<p><em>New in v0.1.7:</em> QuaPy now provides an implementation of the “DyS”
framework proposed by <a class="reference external" href="https://ojs.aaai.org/index.php/AAAI/article/view/4376">Maletzke et al (2020)</a>
and the “SMM” method proposed by <a class="reference external" href="https://ieeexplore.ieee.org/document/9260028">Hassan et al (2019)</a>
(thanks to <em>Pablo González</em> for the contributions!)</p>
</section>
<section id="threshold-optimization-methods">
<h3>Threshold Optimization methods<a class="headerlink" href="#threshold-optimization-methods" title="Permalink to this heading"></a></h3>
<p><em>New in v0.1.7:</em> QuaPy now implements Formans threshold optimization methods;
see, e.g., <a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/1150402.1150423">(Forman 2006)</a>
and <a class="reference external" href="https://link.springer.com/article/10.1007/s10618-008-0097-y">(Forman 2008)</a>.
These include: T50, MAX, X, Median Sweep (MS), and its variant MS2.</p>
</section>
<section id="explicit-loss-minimization">
<h3>Explicit Loss Minimization<a class="headerlink" href="#explicit-loss-minimization" title="Permalink to this heading"></a></h3>
<p>The Explicit Loss Minimization (ELM) represent a family of methods
based on structured output learning, i.e., quantifiers relying on
classifiers that have been optimized targeting a
quantification-oriented evaluation measure.
The original methods are implemented in QuaPy as classify &amp; count (CC)
quantifiers that use Joachims <a class="reference external" href="https://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html">SVMperf</a>
as the underlying classifier, properly set to optimize for the desired loss.</p>
<p>In QuaPy, this can be more achieved by calling the functions:</p>
<ul class="simple">
<li><p><em>newSVMQ</em>: returns the quantification method called SVM(Q) that optimizes for the metric <em>Q</em> defined
in <a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S003132031400291X"><em>Barranquero, J., Díez, J., and del Coz, J. J. (2015). Quantification-oriented learning based
on reliable classifiers. Pattern Recognition, 48(2):591604.</em></a></p></li>
<li><p><em>newSVMKLD</em> and <em>newSVMNKLD</em>: returns the quantification method called SVM(KLD) and SVM(nKLD), standing for
Kullback-Leibler Divergence and Normalized Kullback-Leibler Divergence, as proposed in <a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/2700406"><em>Esuli, A. and Sebastiani, F. (2015).
Optimizing text quantifiers for multivariate loss functions.
ACM Transactions on Knowledge Discovery and Data, 9(4):Article 27.</em></a></p></li>
<li><p><em>newSVMAE</em> and <em>newSVMRAE</em>: returns a quantification method called SVM(AE) and SVM(RAE) that optimizes for the (Mean) Absolute Error and for the
(Mean) Relative Absolute Error, as first used by
<a class="reference external" href="https://arxiv.org/abs/2011.02552"><em>Moreo, A. and Sebastiani, F. (2021). Tweet sentiment quantification: An experimental re-evaluation. PLOS ONE 17 (9), 1-23.</em></a></p></li>
</ul>
<p>the last two methods (SVM(AE) and SVM(RAE)) have been implemented in
QuaPy in order to make available ELM variants for what nowadays
are considered the most well-behaved evaluation metrics in quantification.</p>
<p>In order to make these models work, you would need to run the script
<em>prepare_svmperf.sh</em> (distributed along with QuaPy) that
downloads <em>SVMperf</em> source code, applies a patch that
implements the quantification oriented losses, and compiles the
sources.</p>
<p>If you want to add any custom loss, you would need to modify
the source code of <em>SVMperf</em> in order to implement it, and
assign a valid loss code to it. Then you must re-compile
the whole thing and instantiate the quantifier in QuaPy
as follows:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># you can either set the path to your custom svm_perf_quantification implementation</span>
<span class="c1"># in the environment variable, or as an argument to the constructor of ELM</span>
<span class="n">qp</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s1">&#39;SVMPERF_HOME&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="s1">&#39;./path/to/svm_perf_quantification&#39;</span>
<span class="c1"># assign an alias to your custom loss and the id you have assigned to it</span>
<span class="n">svmperf</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">classification</span><span class="o">.</span><span class="n">svmperf</span><span class="o">.</span><span class="n">SVMperf</span>
<span class="n">svmperf</span><span class="o">.</span><span class="n">valid_losses</span><span class="p">[</span><span class="s1">&#39;mycustomloss&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mi">28</span>
<span class="c1"># instantiate the ELM method indicating the loss</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">method</span><span class="o">.</span><span class="n">aggregative</span><span class="o">.</span><span class="n">ELM</span><span class="p">(</span><span class="n">loss</span><span class="o">=</span><span class="s1">&#39;mycustomloss&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>All ELM are binary quantifiers since they rely on <em>SVMperf</em>, that
currently supports only binary classification.
ELM variants (any binary quantifier in general) can be extended
to operate in single-label scenarios trivially by adopting a
“one-vs-all” strategy (as, e.g., in
<a class="reference external" href="https://link.springer.com/article/10.1007/s13278-016-0327-z"><em>Gao, W. and Sebastiani, F. (2016). From classification to quantification in tweet sentiment
analysis. Social Network Analysis and Mining, 6(19):122</em></a>).
In QuaPy this is possible by using the <em>OneVsAll</em> class.</p>
<p>There are two ways for instantiating this class, <em>OneVsAllGeneric</em> that works for
any quantifier, and <em>OneVsAllAggregative</em> that is optimized for aggregative quantifiers.
In general, you can simply use the <em>getOneVsAll</em> function and QuaPy will choose
the more convenient of the two.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="kn">from</span> <span class="nn">quapy.method.aggregative</span> <span class="kn">import</span> <span class="n">SVMQ</span>
<span class="c1"># load a single-label dataset (this one contains 3 classes)</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_twitter</span><span class="p">(</span><span class="s1">&#39;hcr&#39;</span><span class="p">,</span> <span class="n">pickle</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="c1"># let qp know where svmperf is</span>
<span class="n">qp</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s1">&#39;SVMPERF_HOME&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="s1">&#39;../svm_perf_quantification&#39;</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">getOneVsAll</span><span class="p">(</span><span class="n">SVMQ</span><span class="p">(),</span> <span class="n">n_jobs</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span> <span class="c1"># run them on parallel</span>
<span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">training</span><span class="p">)</span>
<span class="n">estim_prevalence</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">quantify</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">test</span><span class="o">.</span><span class="n">instances</span><span class="p">)</span>
</pre></div>
</div>
<p>Check the examples <em><span class="xref myst">explicit_loss_minimization.py</span></em>
and <span class="xref myst">one_vs_all.py</span> for more details.</p>
</section>
</section>
<section id="meta-models">
<h2>Meta Models<a class="headerlink" href="#meta-models" title="Permalink to this heading"></a></h2>
<p>By <em>meta</em> models we mean quantification methods that are defined on top of other
quantification methods, and that thus do not squarely belong to the aggregative nor
the non-aggregative group (indeed, <em>meta</em> models could use quantifiers from any of those
groups).
<em>Meta</em> models are implemented in the <em>qp.method.meta</em> module.</p>
<section id="ensembles">
<h3>Ensembles<a class="headerlink" href="#ensembles" title="Permalink to this heading"></a></h3>
<p>QuaPy implements (some of) the variants proposed in:</p>
<ul class="simple">
<li><p><a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S1566253516300628"><em>Pérez-Gállego, P., Quevedo, J. R., &amp; del Coz, J. J. (2017).
Using ensembles for problems with characterizable changes in data distribution: A case study on quantification.
Information Fusion, 34, 87-100.</em></a></p></li>
<li><p><a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S1566253517303652"><em>Pérez-Gállego, P., Castano, A., Quevedo, J. R., &amp; del Coz, J. J. (2019).
Dynamic ensemble selection for quantification tasks.
Information Fusion, 45, 1-15.</em></a></p></li>
</ul>
<p>The following code shows how to instantiate an Ensemble of 30 <em>Adjusted Classify &amp; Count</em> (ACC)
quantifiers operating with a <em>Logistic Regressor</em> (LR) as the base classifier, and using the
<em>average</em> as the aggregation policy (see the original article for further details).
The last parameter indicates to use all processors for parallelization.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="kn">from</span> <span class="nn">quapy.method.aggregative</span> <span class="kn">import</span> <span class="n">ACC</span>
<span class="kn">from</span> <span class="nn">quapy.method.meta</span> <span class="kn">import</span> <span class="n">Ensemble</span>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <span class="n">LogisticRegression</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_UCIDataset</span><span class="p">(</span><span class="s1">&#39;haberman&#39;</span><span class="p">)</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">Ensemble</span><span class="p">(</span><span class="n">quantifier</span><span class="o">=</span><span class="n">ACC</span><span class="p">(</span><span class="n">LogisticRegression</span><span class="p">()),</span> <span class="n">size</span><span class="o">=</span><span class="mi">30</span><span class="p">,</span> <span class="n">policy</span><span class="o">=</span><span class="s1">&#39;ave&#39;</span><span class="p">,</span> <span class="n">n_jobs</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">training</span><span class="p">)</span>
<span class="n">estim_prevalence</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">quantify</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">test</span><span class="o">.</span><span class="n">instances</span><span class="p">)</span>
</pre></div>
</div>
<p>Other aggregation policies implemented in QuaPy include:</p>
<ul class="simple">
<li><p>ptr for applying a dynamic selection based on the training prevalence of the ensembles members</p></li>
<li><p>ds for applying a dynamic selection based on the Hellinger Distance</p></li>
<li><p><em>any valid quantification measure</em> (e.g., mse) for performing a static selection based on
the performance estimated for each member of the ensemble in terms of that evaluation metric.</p></li>
</ul>
<p>When using any of the above options, it is important to set the <em>red_size</em> parameter, which
informs of the number of members to retain.</p>
<p>Please, check the <a class="reference external" href="https://github.com/HLT-ISTI/QuaPy/wiki/Model-Selection">model selection</a>
wiki if you want to optimize the hyperparameters of ensemble for classification or quantification.</p>
</section>
<section id="the-quanet-neural-network">
<h3>The QuaNet neural network<a class="headerlink" href="#the-quanet-neural-network" title="Permalink to this heading"></a></h3>
<p>QuaPy offers an implementation of QuaNet, a deep learning model presented in:</p>
<p><a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/3269206.3269287"><em>Esuli, A., Moreo, A., &amp; Sebastiani, F. (2018, October).
A recurrent neural network for sentiment quantification.
In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management (pp. 1775-1778).</em></a></p>
<p>This model requires <em>torch</em> to be installed.
QuaNet also requires a classifier that can provide embedded representations
of the inputs.
In the original paper, QuaNet was tested using an LSTM as the base classifier.
In the following example, we show an instantiation of QuaNet that instead uses CNN as a probabilistic classifier, taking its last layer representation as the document embedding:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="kn">from</span> <span class="nn">quapy.method.meta</span> <span class="kn">import</span> <span class="n">QuaNet</span>
<span class="kn">from</span> <span class="nn">quapy.classification.neural</span> <span class="kn">import</span> <span class="n">NeuralClassifierTrainer</span><span class="p">,</span> <span class="n">CNNnet</span>
<span class="c1"># use samples of 100 elements</span>
<span class="n">qp</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s1">&#39;SAMPLE_SIZE&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mi">100</span>
<span class="c1"># load the kindle dataset as text, and convert words to numerical indexes</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_reviews</span><span class="p">(</span><span class="s1">&#39;kindle&#39;</span><span class="p">,</span> <span class="n">pickle</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">qp</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">preprocessing</span><span class="o">.</span><span class="n">index</span><span class="p">(</span><span class="n">dataset</span><span class="p">,</span> <span class="n">min_df</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="c1"># the text classifier is a CNN trained by NeuralClassifierTrainer</span>
<span class="n">cnn</span> <span class="o">=</span> <span class="n">CNNnet</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">vocabulary_size</span><span class="p">,</span> <span class="n">dataset</span><span class="o">.</span><span class="n">n_classes</span><span class="p">)</span>
<span class="n">learner</span> <span class="o">=</span> <span class="n">NeuralClassifierTrainer</span><span class="p">(</span><span class="n">cnn</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="c1"># train QuaNet</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">QuaNet</span><span class="p">(</span><span class="n">learner</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">training</span><span class="p">)</span>
<span class="n">estim_prevalence</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">quantify</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">test</span><span class="o">.</span><span class="n">instances</span><span class="p">)</span>
</pre></div>
</div>
</section>
</section>
</section>
<div class="clearer"></div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<div>
<h3><a href="index.html">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Quantification Methods</a><ul>
<li><a class="reference internal" href="#aggregative-methods">Aggregative Methods</a><ul>
<li><a class="reference internal" href="#the-classify-count-variants">The Classify &amp; Count variants</a></li>
<li><a class="reference internal" href="#expectation-maximization-emq">Expectation Maximization (EMQ)</a></li>
<li><a class="reference internal" href="#hellinger-distance-y-hdy">Hellinger Distance y (HDy)</a></li>
<li><a class="reference internal" href="#threshold-optimization-methods">Threshold Optimization methods</a></li>
<li><a class="reference internal" href="#explicit-loss-minimization">Explicit Loss Minimization</a></li>
</ul>
</li>
<li><a class="reference internal" href="#meta-models">Meta Models</a><ul>
<li><a class="reference internal" href="#ensembles">Ensembles</a></li>
<li><a class="reference internal" href="#the-quanet-neural-network">The QuaNet neural network</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
<div>
<h4>Previous topic</h4>
<p class="topless"><a href="Protocols.html"
title="previous chapter">Protocols</a></p>
</div>
<div>
<h4>Next topic</h4>
<p class="topless"><a href="Model-Selection.html"
title="next chapter">Model Selection</a></p>
</div>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/Methods.md.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>document.getElementById('searchbox').style.display = "block"</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="Model-Selection.html" title="Model Selection"
>next</a> |</li>
<li class="right" >
<a href="Protocols.html" title="Protocols"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Quantification Methods</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2021, Alejandro Moreo.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 5.3.0.
</div>
</body>
</html>

View File

@ -1,268 +0,0 @@
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<title>Model Selection &#8212; QuaPy 0.1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/bizstyle.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Plotting" href="Plotting.html" />
<link rel="prev" title="Quantification Methods" href="Methods.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="Plotting.html" title="Plotting"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="Methods.html" title="Quantification Methods"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Model Selection</a></li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<section id="model-selection">
<h1>Model Selection<a class="headerlink" href="#model-selection" title="Permalink to this heading"></a></h1>
<p>As a supervised machine learning task, quantification methods
can strongly depend on a good choice of model hyper-parameters.
The process whereby those hyper-parameters are chosen is
typically known as <em>Model Selection</em>, and typically consists of
testing different settings and picking the one that performed
best in a held-out validation set in terms of any given
evaluation measure.</p>
<section id="targeting-a-quantification-oriented-loss">
<h2>Targeting a Quantification-oriented loss<a class="headerlink" href="#targeting-a-quantification-oriented-loss" title="Permalink to this heading"></a></h2>
<p>The task being optimized determines the evaluation protocol,
i.e., the criteria according to which the performance of
any given method for solving is to be assessed.
As a task on its own right, quantification should impose
its own model selection strategies, i.e., strategies
aimed at finding appropriate configurations
specifically designed for the task of quantification.</p>
<p>Quantification has long been regarded as an add-on of
classification, and thus the model selection strategies
customarily adopted in classification have simply been
applied to quantification (see the next section).
It has been argued in <a class="reference external" href="https://link.springer.com/chapter/10.1007/978-3-030-72240-1_6">Moreo, Alejandro, and Fabrizio Sebastiani.
Re-Assessing the “Classify and Count” Quantification Method.
ECIR 2021: Advances in Information Retrieval pp 7591.</a>
that specific model selection strategies should
be adopted for quantification. That is, model selection
strategies for quantification should target
quantification-oriented losses and be tested in a variety
of scenarios exhibiting different degrees of prior
probability shift.</p>
<p>The class <em>qp.model_selection.GridSearchQ</em> implements a grid-search exploration over the space of
hyper-parameter combinations that <a class="reference external" href="https://github.com/HLT-ISTI/QuaPy/wiki/Evaluation">evaluates</a>
each combination of hyper-parameters by means of a given quantification-oriented
error metric (e.g., any of the error functions implemented
in <em>qp.error</em>) and according to a
<a class="reference external" href="https://github.com/HLT-ISTI/QuaPy/wiki/Protocols">sampling generation protocol</a>.</p>
<p>The following is an example (also included in the examples folder) of model selection for quantification:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="kn">from</span> <span class="nn">quapy.protocol</span> <span class="kn">import</span> <span class="n">APP</span>
<span class="kn">from</span> <span class="nn">quapy.method.aggregative</span> <span class="kn">import</span> <span class="n">DistributionMatching</span>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <span class="n">LogisticRegression</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">In this example, we show how to perform model selection on a DistributionMatching quantifier.</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">DistributionMatching</span><span class="p">(</span><span class="n">LogisticRegression</span><span class="p">())</span>
<span class="n">qp</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s1">&#39;SAMPLE_SIZE&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mi">100</span>
<span class="n">qp</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s1">&#39;N_JOBS&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="o">-</span><span class="mi">1</span> <span class="c1"># explore hyper-parameters in parallel</span>
<span class="n">training</span><span class="p">,</span> <span class="n">test</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_reviews</span><span class="p">(</span><span class="s1">&#39;imdb&#39;</span><span class="p">,</span> <span class="n">tfidf</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">min_df</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span><span class="o">.</span><span class="n">train_test</span>
<span class="c1"># The model will be returned by the fit method of GridSearchQ.</span>
<span class="c1"># Every combination of hyper-parameters will be evaluated by confronting the</span>
<span class="c1"># quantifier thus configured against a series of samples generated by means</span>
<span class="c1"># of a sample generation protocol. For this example, we will use the</span>
<span class="c1"># artificial-prevalence protocol (APP), that generates samples with prevalence</span>
<span class="c1"># values in the entire range of values from a grid (e.g., [0, 0.1, 0.2, ..., 1]).</span>
<span class="c1"># We devote 30% of the dataset for this exploration.</span>
<span class="n">training</span><span class="p">,</span> <span class="n">validation</span> <span class="o">=</span> <span class="n">training</span><span class="o">.</span><span class="n">split_stratified</span><span class="p">(</span><span class="n">train_prop</span><span class="o">=</span><span class="mf">0.7</span><span class="p">)</span>
<span class="n">protocol</span> <span class="o">=</span> <span class="n">APP</span><span class="p">(</span><span class="n">validation</span><span class="p">)</span>
<span class="c1"># We will explore a classification-dependent hyper-parameter (e.g., the &#39;C&#39;</span>
<span class="c1"># hyper-parameter of LogisticRegression) and a quantification-dependent hyper-parameter</span>
<span class="c1"># (e.g., the number of bins in a DistributionMatching quantifier.</span>
<span class="c1"># Classifier-dependent hyper-parameters have to be marked with a prefix &quot;classifier__&quot;</span>
<span class="c1"># in order to let the quantifier know this hyper-parameter belongs to its underlying</span>
<span class="c1"># classifier.</span>
<span class="n">param_grid</span> <span class="o">=</span> <span class="p">{</span>
<span class="s1">&#39;classifier__C&#39;</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">logspace</span><span class="p">(</span><span class="o">-</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">7</span><span class="p">),</span>
<span class="s1">&#39;nbins&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">8</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="mi">64</span><span class="p">],</span>
<span class="p">}</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">model_selection</span><span class="o">.</span><span class="n">GridSearchQ</span><span class="p">(</span>
<span class="n">model</span><span class="o">=</span><span class="n">model</span><span class="p">,</span>
<span class="n">param_grid</span><span class="o">=</span><span class="n">param_grid</span><span class="p">,</span>
<span class="n">protocol</span><span class="o">=</span><span class="n">protocol</span><span class="p">,</span>
<span class="n">error</span><span class="o">=</span><span class="s1">&#39;mae&#39;</span><span class="p">,</span> <span class="c1"># the error to optimize is the MAE (a quantification-oriented loss)</span>
<span class="n">refit</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="c1"># retrain on the whole labelled set once done</span>
<span class="n">verbose</span><span class="o">=</span><span class="kc">True</span> <span class="c1"># show information as the process goes on</span>
<span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">training</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;model selection ended: best hyper-parameters=</span><span class="si">{</span><span class="n">model</span><span class="o">.</span><span class="n">best_params_</span><span class="si">}</span><span class="s1">&#39;</span><span class="p">)</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">best_model_</span>
<span class="c1"># evaluation in terms of MAE</span>
<span class="c1"># we use the same evaluation protocol (APP) on the test set</span>
<span class="n">mae_score</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">evaluation</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">protocol</span><span class="o">=</span><span class="n">APP</span><span class="p">(</span><span class="n">test</span><span class="p">),</span> <span class="n">error_metric</span><span class="o">=</span><span class="s1">&#39;mae&#39;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;MAE=</span><span class="si">{</span><span class="n">mae_score</span><span class="si">:</span><span class="s1">.5f</span><span class="si">}</span><span class="s1">&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>In this example, the system outputs:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">[</span><span class="n">GridSearchQ</span><span class="p">]:</span> <span class="n">starting</span> <span class="n">model</span> <span class="n">selection</span> <span class="k">with</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_jobs</span> <span class="o">=-</span><span class="mi">1</span>
<span class="p">[</span><span class="n">GridSearchQ</span><span class="p">]:</span> <span class="n">hyperparams</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;classifier__C&#39;</span><span class="p">:</span> <span class="mf">0.01</span><span class="p">,</span> <span class="s1">&#39;nbins&#39;</span><span class="p">:</span> <span class="mi">64</span><span class="p">}</span> <span class="n">got</span> <span class="n">mae</span> <span class="n">score</span> <span class="mf">0.04021</span> <span class="p">[</span><span class="n">took</span> <span class="mf">1.1356</span><span class="n">s</span><span class="p">]</span>
<span class="p">[</span><span class="n">GridSearchQ</span><span class="p">]:</span> <span class="n">hyperparams</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;classifier__C&#39;</span><span class="p">:</span> <span class="mf">0.01</span><span class="p">,</span> <span class="s1">&#39;nbins&#39;</span><span class="p">:</span> <span class="mi">32</span><span class="p">}</span> <span class="n">got</span> <span class="n">mae</span> <span class="n">score</span> <span class="mf">0.04286</span> <span class="p">[</span><span class="n">took</span> <span class="mf">1.2139</span><span class="n">s</span><span class="p">]</span>
<span class="p">[</span><span class="n">GridSearchQ</span><span class="p">]:</span> <span class="n">hyperparams</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;classifier__C&#39;</span><span class="p">:</span> <span class="mf">0.01</span><span class="p">,</span> <span class="s1">&#39;nbins&#39;</span><span class="p">:</span> <span class="mi">16</span><span class="p">}</span> <span class="n">got</span> <span class="n">mae</span> <span class="n">score</span> <span class="mf">0.04888</span> <span class="p">[</span><span class="n">took</span> <span class="mf">1.2491</span><span class="n">s</span><span class="p">]</span>
<span class="p">[</span><span class="n">GridSearchQ</span><span class="p">]:</span> <span class="n">hyperparams</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;classifier__C&#39;</span><span class="p">:</span> <span class="mf">0.001</span><span class="p">,</span> <span class="s1">&#39;nbins&#39;</span><span class="p">:</span> <span class="mi">8</span><span class="p">}</span> <span class="n">got</span> <span class="n">mae</span> <span class="n">score</span> <span class="mf">0.05163</span> <span class="p">[</span><span class="n">took</span> <span class="mf">1.5372</span><span class="n">s</span><span class="p">]</span>
<span class="p">[</span><span class="o">...</span><span class="p">]</span>
<span class="p">[</span><span class="n">GridSearchQ</span><span class="p">]:</span> <span class="n">hyperparams</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;classifier__C&#39;</span><span class="p">:</span> <span class="mf">1000.0</span><span class="p">,</span> <span class="s1">&#39;nbins&#39;</span><span class="p">:</span> <span class="mi">32</span><span class="p">}</span> <span class="n">got</span> <span class="n">mae</span> <span class="n">score</span> <span class="mf">0.02445</span> <span class="p">[</span><span class="n">took</span> <span class="mf">2.9056</span><span class="n">s</span><span class="p">]</span>
<span class="p">[</span><span class="n">GridSearchQ</span><span class="p">]:</span> <span class="n">optimization</span> <span class="n">finished</span><span class="p">:</span> <span class="n">best</span> <span class="n">params</span> <span class="p">{</span><span class="s1">&#39;classifier__C&#39;</span><span class="p">:</span> <span class="mf">100.0</span><span class="p">,</span> <span class="s1">&#39;nbins&#39;</span><span class="p">:</span> <span class="mi">32</span><span class="p">}</span> <span class="p">(</span><span class="n">score</span><span class="o">=</span><span class="mf">0.02234</span><span class="p">)</span> <span class="p">[</span><span class="n">took</span> <span class="mf">7.3114</span><span class="n">s</span><span class="p">]</span>
<span class="p">[</span><span class="n">GridSearchQ</span><span class="p">]:</span> <span class="n">refitting</span> <span class="n">on</span> <span class="n">the</span> <span class="n">whole</span> <span class="n">development</span> <span class="nb">set</span>
<span class="n">model</span> <span class="n">selection</span> <span class="n">ended</span><span class="p">:</span> <span class="n">best</span> <span class="n">hyper</span><span class="o">-</span><span class="n">parameters</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;classifier__C&#39;</span><span class="p">:</span> <span class="mf">100.0</span><span class="p">,</span> <span class="s1">&#39;nbins&#39;</span><span class="p">:</span> <span class="mi">32</span><span class="p">}</span>
<span class="n">MAE</span><span class="o">=</span><span class="mf">0.03102</span>
</pre></div>
</div>
<p>The parameter <em>val_split</em> can alternatively be used to indicate
a validation set (i.e., an instance of <em>LabelledCollection</em>) instead
of a proportion. This could be useful if one wants to have control
on the specific data split to be used across different model selection
experiments.</p>
</section>
<section id="targeting-a-classification-oriented-loss">
<h2>Targeting a Classification-oriented loss<a class="headerlink" href="#targeting-a-classification-oriented-loss" title="Permalink to this heading"></a></h2>
<p>Optimizing a model for quantification could rather be
computationally costly.
In aggregative methods, one could alternatively try to optimize
the classifiers hyper-parameters for classification.
Although this is theoretically suboptimal, many articles in
quantification literature have opted for this strategy.</p>
<p>In QuaPy, this is achieved by simply instantiating the
classifier learner as a GridSearchCV from scikit-learn.
The following code illustrates how to do that:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">learner</span> <span class="o">=</span> <span class="n">GridSearchCV</span><span class="p">(</span>
<span class="n">LogisticRegression</span><span class="p">(),</span>
<span class="n">param_grid</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;C&#39;</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">logspace</span><span class="p">(</span><span class="o">-</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="s1">&#39;class_weight&#39;</span><span class="p">:</span> <span class="p">[</span><span class="s1">&#39;balanced&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">]},</span>
<span class="n">cv</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">DistributionMatching</span><span class="p">(</span><span class="n">learner</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">training</span><span class="p">)</span>
</pre></div>
</div>
<p>However, this is conceptually flawed, since the model should be
optimized for the task at hand (quantification), and not for a surrogate task (classification),
i.e., the model should be requested to deliver low quantification errors, rather
than low classification errors.</p>
</section>
</section>
<div class="clearer"></div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<div>
<h3><a href="index.html">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Model Selection</a><ul>
<li><a class="reference internal" href="#targeting-a-quantification-oriented-loss">Targeting a Quantification-oriented loss</a></li>
<li><a class="reference internal" href="#targeting-a-classification-oriented-loss">Targeting a Classification-oriented loss</a></li>
</ul>
</li>
</ul>
</div>
<div>
<h4>Previous topic</h4>
<p class="topless"><a href="Methods.html"
title="previous chapter">Quantification Methods</a></p>
</div>
<div>
<h4>Next topic</h4>
<p class="topless"><a href="Plotting.html"
title="next chapter">Plotting</a></p>
</div>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/Model-Selection.md.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>document.getElementById('searchbox').style.display = "block"</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="Plotting.html" title="Plotting"
>next</a> |</li>
<li class="right" >
<a href="Methods.html" title="Quantification Methods"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Model Selection</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2021, Alejandro Moreo.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 5.3.0.
</div>
</body>
</html>

View File

@ -1,350 +0,0 @@
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<title>Plotting &#8212; QuaPy 0.1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/bizstyle.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="quapy" href="modules.html" />
<link rel="prev" title="Model Selection" href="Model-Selection.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="modules.html" title="quapy"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="Model-Selection.html" title="Model Selection"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Plotting</a></li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<section id="plotting">
<h1>Plotting<a class="headerlink" href="#plotting" title="Permalink to this heading"></a></h1>
<p>The module <em>qp.plot</em> implements some basic plotting functions
that can help analyse the performance of a quantification method.</p>
<p>All plotting functions receive as inputs the outcomes of
some experiments and include, for each experiment,
the following three main arguments:</p>
<ul class="simple">
<li><p><em>method_names</em> a list containing the names of the quantification methods</p></li>
<li><p><em>true_prevs</em> a list containing matrices of true prevalences</p></li>
<li><p><em>estim_prevs</em> a list containing matrices of estimated prevalences
(should be of the same shape as the corresponding matrix in <em>true_prevs</em>)</p></li>
</ul>
<p>Note that a method (as indicated by a name in <em>method_names</em>) can
appear more than once. This could occur when various datasets are
involved in the experiments. In this case, all experiments for the
method will be merged and the plot will represent the methods
performance across various datasets.</p>
<p>This is a very simple example of a valid input for the plotting functions:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">method_names</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;classify &amp; count&#39;</span><span class="p">,</span> <span class="s1">&#39;EMQ&#39;</span><span class="p">,</span> <span class="s1">&#39;classify &amp; count&#39;</span><span class="p">]</span>
<span class="n">true_prevs</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.25</span><span class="p">,</span> <span class="mf">0.75</span><span class="p">]]),</span>
<span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.25</span><span class="p">,</span> <span class="mf">0.75</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">]]),</span>
<span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.25</span><span class="p">,</span> <span class="mf">0.75</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">]]),</span>
<span class="p">]</span>
<span class="n">estim_prevs</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mf">0.45</span><span class="p">,</span> <span class="mf">0.55</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">]]),</span>
<span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">]]),</span>
<span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.9</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.3</span><span class="p">,</span> <span class="mf">0.7</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">]]),</span>
<span class="p">]</span>
</pre></div>
</div>
<p>in which the <em>classify &amp; count</em> has been tested in two datasets and
the <em>EMQ</em> method has been tested only in one dataset. For the first
experiment, only two (binary) quantifications have been tested,
while for the second and third experiments three instances have
been tested.</p>
<p>In general, we would like to test the performance of the
quantification methods across different scenarios showcasing
the accuracy of the quantifier in predicting class prevalences
for a wide range of prior distributions. This can easily be
achieved by means of the
<a class="reference external" href="https://github.com/HLT-ISTI/QuaPy/wiki/Protocols">artificial sampling protocol</a>
that is implemented in QuaPy.</p>
<p>The following code shows how to perform one simple experiment
in which the 4 <em>CC-variants</em>, all equipped with a linear SVM, are
applied to one binary dataset of reviews about <em>Kindle</em> devices and
tested across the entire spectrum of class priors (taking 21 splits
of the interval [0,1], i.e., using prevalence steps of 0.05, and
generating 100 random samples at each prevalence).</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="kn">from</span> <span class="nn">protocol</span> <span class="kn">import</span> <span class="n">APP</span>
<span class="kn">from</span> <span class="nn">quapy.method.aggregative</span> <span class="kn">import</span> <span class="n">CC</span><span class="p">,</span> <span class="n">ACC</span><span class="p">,</span> <span class="n">PCC</span><span class="p">,</span> <span class="n">PACC</span>
<span class="kn">from</span> <span class="nn">sklearn.svm</span> <span class="kn">import</span> <span class="n">LinearSVC</span>
<span class="n">qp</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s1">&#39;SAMPLE_SIZE&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mi">500</span>
<span class="k">def</span> <span class="nf">gen_data</span><span class="p">():</span>
<span class="k">def</span> <span class="nf">base_classifier</span><span class="p">():</span>
<span class="k">return</span> <span class="n">LinearSVC</span><span class="p">(</span><span class="n">class_weight</span><span class="o">=</span><span class="s1">&#39;balanced&#39;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">models</span><span class="p">():</span>
<span class="k">yield</span> <span class="s1">&#39;CC&#39;</span><span class="p">,</span> <span class="n">CC</span><span class="p">(</span><span class="n">base_classifier</span><span class="p">())</span>
<span class="k">yield</span> <span class="s1">&#39;ACC&#39;</span><span class="p">,</span> <span class="n">ACC</span><span class="p">(</span><span class="n">base_classifier</span><span class="p">())</span>
<span class="k">yield</span> <span class="s1">&#39;PCC&#39;</span><span class="p">,</span> <span class="n">PCC</span><span class="p">(</span><span class="n">base_classifier</span><span class="p">())</span>
<span class="k">yield</span> <span class="s1">&#39;PACC&#39;</span><span class="p">,</span> <span class="n">PACC</span><span class="p">(</span><span class="n">base_classifier</span><span class="p">())</span>
<span class="n">train</span><span class="p">,</span> <span class="n">test</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_reviews</span><span class="p">(</span><span class="s1">&#39;kindle&#39;</span><span class="p">,</span> <span class="n">tfidf</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">min_df</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span><span class="o">.</span><span class="n">train_test</span>
<span class="n">method_names</span><span class="p">,</span> <span class="n">true_prevs</span><span class="p">,</span> <span class="n">estim_prevs</span><span class="p">,</span> <span class="n">tr_prevs</span> <span class="o">=</span> <span class="p">[],</span> <span class="p">[],</span> <span class="p">[],</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">method_name</span><span class="p">,</span> <span class="n">model</span> <span class="ow">in</span> <span class="n">models</span><span class="p">():</span>
<span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">train</span><span class="p">)</span>
<span class="n">true_prev</span><span class="p">,</span> <span class="n">estim_prev</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">evaluation</span><span class="o">.</span><span class="n">prediction</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">APP</span><span class="p">(</span><span class="n">test</span><span class="p">,</span> <span class="n">repeats</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">))</span>
<span class="n">method_names</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">method_name</span><span class="p">)</span>
<span class="n">true_prevs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">true_prev</span><span class="p">)</span>
<span class="n">estim_prevs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">estim_prev</span><span class="p">)</span>
<span class="n">tr_prevs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">train</span><span class="o">.</span><span class="n">prevalence</span><span class="p">())</span>
<span class="k">return</span> <span class="n">method_names</span><span class="p">,</span> <span class="n">true_prevs</span><span class="p">,</span> <span class="n">estim_prevs</span><span class="p">,</span> <span class="n">tr_prevs</span>
<span class="n">method_names</span><span class="p">,</span> <span class="n">true_prevs</span><span class="p">,</span> <span class="n">estim_prevs</span><span class="p">,</span> <span class="n">tr_prevs</span> <span class="o">=</span> <span class="n">gen_data</span><span class="p">()</span>
</pre></div>
</div>
<p>the plots that can be generated are explained below.</p>
<section id="diagonal-plot">
<h2>Diagonal Plot<a class="headerlink" href="#diagonal-plot" title="Permalink to this heading"></a></h2>
<p>The <em>diagonal</em> plot shows a very insightful view of the
quantifiers performance. It plots the predicted class
prevalence (in the y-axis) against the true class prevalence
(in the x-axis). Unfortunately, it is limited to binary quantification,
although one can simply generate as many <em>diagonal</em> plots as
classes there are by indicating which class should be considered
the target of the plot.</p>
<p>The following call will produce the plot:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">qp</span><span class="o">.</span><span class="n">plot</span><span class="o">.</span><span class="n">binary_diagonal</span><span class="p">(</span><span class="n">method_names</span><span class="p">,</span> <span class="n">true_prevs</span><span class="p">,</span> <span class="n">estim_prevs</span><span class="p">,</span> <span class="n">train_prev</span><span class="o">=</span><span class="n">tr_prevs</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">savepath</span><span class="o">=</span><span class="s1">&#39;./plots/bin_diag.png&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>the last argument is optional, and indicates the path where to save
the plot (the file extension will determine the format typical extensions
are .png or .pdf). If this path is not provided, then the plot
will be shown but not saved.
The resulting plot should look like:</p>
<p><img alt="diagonal plot on Kindle" src="_images/bin_diag.png" /></p>
<p>Note that in this case, we are also indicating the training
prevalence, which is plotted in the diagonal a as cyan dot.
The color bands indicate the standard deviations of the predictions,
and can be hidden by setting the argument <em>show_std=False</em> (see
the complete list of arguments in the documentation).</p>
<p>Finally, note how most quantifiers, and specially the “unadjusted”
variants CC and PCC, are strongly biased towards the
prevalence seen during training.</p>
</section>
<section id="quantification-bias">
<h2>Quantification bias<a class="headerlink" href="#quantification-bias" title="Permalink to this heading"></a></h2>
<p>This plot aims at evincing the bias that any quantifier
displays with respect to the training prevalences by
means of <a class="reference external" href="https://en.wikipedia.org/wiki/Box_plot">box plots</a>.
This plot can be generated by:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">qp</span><span class="o">.</span><span class="n">plot</span><span class="o">.</span><span class="n">binary_bias_global</span><span class="p">(</span><span class="n">method_names</span><span class="p">,</span> <span class="n">true_prevs</span><span class="p">,</span> <span class="n">estim_prevs</span><span class="p">,</span> <span class="n">savepath</span><span class="o">=</span><span class="s1">&#39;./plots/bin_bias.png&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>and should look like:</p>
<p><img alt="bias plot on Kindle" src="_images/bin_bias.png" /></p>
<p>The box plots show some interesting facts:</p>
<ul class="simple">
<li><p>all methods are biased towards the training prevalence but specially
so CC and PCC (an unbiased quantifier would have a box centered at 0)</p></li>
<li><p>the bias is always positive, indicating that all methods tend to
overestimate the positive class prevalence</p></li>
<li><p>CC and PCC have high variability while ACC and specially PACC exhibit
lower variability.</p></li>
</ul>
<p>Again, these plots could be generated for experiments ranging across
different datasets, and the plot will merge all data accordingly.</p>
<p>Another illustrative example can be shown that consists of
training different CC quantifiers trained at different
(artificially sampled) training prevalences.
For this example, we generate training samples of 5000
documents containing 10%, 20%, …, 90% of positives from the
IMDb dataset, and generate the bias plot again.
This example can be run by rewritting the <em>gen_data()</em> function
like this:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">gen_data</span><span class="p">():</span>
<span class="n">train</span><span class="p">,</span> <span class="n">test</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_reviews</span><span class="p">(</span><span class="s1">&#39;imdb&#39;</span><span class="p">,</span> <span class="n">tfidf</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">min_df</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span><span class="o">.</span><span class="n">train_test</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">CC</span><span class="p">(</span><span class="n">LinearSVC</span><span class="p">())</span>
<span class="n">method_data</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">training_prevalence</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.9</span><span class="p">,</span> <span class="mi">9</span><span class="p">):</span>
<span class="n">training_size</span> <span class="o">=</span> <span class="mi">5000</span>
<span class="c1"># since the problem is binary, it suffices to specify the negative prevalence, since the positive is constrained</span>
<span class="n">train_sample</span> <span class="o">=</span> <span class="n">train</span><span class="o">.</span><span class="n">sampling</span><span class="p">(</span><span class="n">training_size</span><span class="p">,</span> <span class="mi">1</span><span class="o">-</span><span class="n">training_prevalence</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">train_sample</span><span class="p">)</span>
<span class="n">true_prev</span><span class="p">,</span> <span class="n">estim_prev</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">evaluation</span><span class="o">.</span><span class="n">prediction</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">APP</span><span class="p">(</span><span class="n">test</span><span class="p">,</span> <span class="n">repeats</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">))</span>
<span class="n">method_name</span> <span class="o">=</span> <span class="s1">&#39;CC$_{&#39;</span><span class="o">+</span><span class="sa">f</span><span class="s1">&#39;</span><span class="si">{</span><span class="nb">int</span><span class="p">(</span><span class="mi">100</span><span class="o">*</span><span class="n">training_prevalence</span><span class="p">)</span><span class="si">}</span><span class="s1">&#39;</span> <span class="o">+</span> <span class="s1">&#39;\%}$&#39;</span>
<span class="n">method_data</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">method_name</span><span class="p">,</span> <span class="n">true_prev</span><span class="p">,</span> <span class="n">estim_prev</span><span class="p">,</span> <span class="n">train_sample</span><span class="o">.</span><span class="n">prevalence</span><span class="p">()))</span>
<span class="k">return</span> <span class="nb">zip</span><span class="p">(</span><span class="o">*</span><span class="n">method_data</span><span class="p">)</span>
</pre></div>
</div>
<p>and the plot should now look like:</p>
<p><img alt="bias plot on IMDb" src="_images/bin_bias_cc.png" /></p>
<p>which clearly shows a negative bias for CC variants trained on
data containing more negatives (i.e., &lt; 50%) and positive biases
in cases containing more positives (i.e., &gt;50%). The CC trained
at 50% behaves as an unbiased estimator of the positive class
prevalence.</p>
<p>The function <em>qp.plot.binary_bias_bins</em> allows the user to
generate box plots broken down by bins of true test prevalence.
To this aim, an argument <em>nbins</em> is passed which indicates
how many isometric subintervals to take. For example
the following plot is produced for <em>nbins=3</em>:</p>
<p><img alt="bias plot on IMDb" src="_images/bin_bias_bin_cc.png" /></p>
<p>Interestingly enough, the seemingly unbiased estimator (CC at 50%) happens to display
a positive bias (or a tendency to overestimate) in cases of low prevalence
(i.e., when the true prevalence of the positive class is below 33%),
and a negative bias (or a tendency to underestimate) in cases of high prevalence
(i.e., when the true prevalence is beyond 67%).</p>
<p>Out of curiosity, the diagonal plot for this experiment looks like:</p>
<p><img alt="diag plot on IMDb" src="_images/bin_diag_cc.png" /></p>
<p>showing pretty clearly the dependency of CC on the prior probabilities
of the labeled set it was trained on.</p>
</section>
<section id="error-by-drift">
<h2>Error by Drift<a class="headerlink" href="#error-by-drift" title="Permalink to this heading"></a></h2>
<p>Above discussed plots are useful for analyzing and comparing
the performance of different quantification methods, but are
limited to the binary case. The “error by drift” is a plot
that shows the error in predictions as a function of the
(prior probability) drift between each test sample and the
training set. Interestingly, the error and drift can both be measured
in terms of any evaluation measure for quantification (like the
ones available in <em>qp.error</em>) and can thus be computed
irrespectively of the number of classes.</p>
<p>The following shows how to generate the plot for the 4 CC variants,
using 10 bins for the drift
and <em>absolute error</em> as the measure of the error (the
drift in the x-axis is always computed in terms of <em>absolute error</em> since
other errors are harder to interpret):</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">qp</span><span class="o">.</span><span class="n">plot</span><span class="o">.</span><span class="n">error_by_drift</span><span class="p">(</span><span class="n">method_names</span><span class="p">,</span> <span class="n">true_prevs</span><span class="p">,</span> <span class="n">estim_prevs</span><span class="p">,</span> <span class="n">tr_prevs</span><span class="p">,</span>
<span class="n">error_name</span><span class="o">=</span><span class="s1">&#39;ae&#39;</span><span class="p">,</span> <span class="n">n_bins</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">savepath</span><span class="o">=</span><span class="s1">&#39;./plots/err_drift.png&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p><img alt="diag plot on IMDb" src="_images/err_drift.png" /></p>
<p>Note that all methods work reasonably well in cases of low prevalence
drift (i.e., any CC-variant is a good quantifier whenever the IID
assumption is approximately preserved). The higher the drift, the worse
those quantifiers tend to perform, although it is clear that PACC
yields the lowest error for the most difficult cases.</p>
<p>Remember that any plot can be generated <em>across many datasets</em>, and
that this would probably result in a more solid comparison.
In those cases, however, it is likely that the variances of each
method get higher, to the detriment of the visualization.
We recommend to set <em>show_std=False</em> in those cases
in order to hide the color bands.</p>
</section>
</section>
<div class="clearer"></div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<div>
<h3><a href="index.html">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Plotting</a><ul>
<li><a class="reference internal" href="#diagonal-plot">Diagonal Plot</a></li>
<li><a class="reference internal" href="#quantification-bias">Quantification bias</a></li>
<li><a class="reference internal" href="#error-by-drift">Error by Drift</a></li>
</ul>
</li>
</ul>
</div>
<div>
<h4>Previous topic</h4>
<p class="topless"><a href="Model-Selection.html"
title="previous chapter">Model Selection</a></p>
</div>
<div>
<h4>Next topic</h4>
<p class="topless"><a href="modules.html"
title="next chapter">quapy</a></p>
</div>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/Plotting.md.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>document.getElementById('searchbox').style.display = "block"</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="modules.html" title="quapy"
>next</a> |</li>
<li class="right" >
<a href="Model-Selection.html" title="Model Selection"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Plotting</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2021, Alejandro Moreo.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 5.3.0.
</div>
</body>
</html>

Binary file not shown.

Before

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 108 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 185 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 337 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 243 KiB

View File

@ -1,356 +0,0 @@
# Datasets
QuaPy makes available several datasets that have been used in
quantification literature, as well as an interface to allow
anyone import their custom datasets.
A _Dataset_ object in QuaPy is roughly a pair of _LabelledCollection_ objects,
one playing the role of the training set, another the test set.
_LabelledCollection_ is a data class consisting of the (iterable)
instances and labels. This class handles most of the sampling functionality in QuaPy.
Take a look at the following code:
```python
import quapy as qp
import quapy.functional as F
instances = [
'1st positive document', '2nd positive document',
'the only negative document',
'1st neutral document', '2nd neutral document', '3rd neutral document'
]
labels = [2, 2, 0, 1, 1, 1]
data = qp.data.LabelledCollection(instances, labels)
print(F.strprev(data.prevalence(), prec=2))
```
Output the class prevalences (showing 2 digit precision):
```
[0.17, 0.50, 0.33]
```
One can easily produce new samples at desired class prevalence values:
```python
sample_size = 10
prev = [0.4, 0.1, 0.5]
sample = data.sampling(sample_size, *prev)
print('instances:', sample.instances)
print('labels:', sample.labels)
print('prevalence:', F.strprev(sample.prevalence(), prec=2))
```
Which outputs:
```
instances: ['the only negative document' '2nd positive document'
'2nd positive document' '2nd neutral document' '1st positive document'
'the only negative document' 'the only negative document'
'the only negative document' '2nd positive document'
'1st positive document']
labels: [0 2 2 1 2 0 0 0 2 2]
prevalence: [0.40, 0.10, 0.50]
```
Samples can be made consistent across different runs (e.g., to test
different methods on the same exact samples) by sampling and retaining
the indexes, that can then be used to generate the sample:
```python
index = data.sampling_index(sample_size, *prev)
for method in methods:
sample = data.sampling_from_index(index)
...
```
However, generating samples for evaluation purposes is tackled in QuaPy
by means of the evaluation protocols (see the dedicated entries in the Wiki
for [evaluation](https://github.com/HLT-ISTI/QuaPy/wiki/Evaluation) and
[protocols](https://github.com/HLT-ISTI/QuaPy/wiki/Protocols)).
## Reviews Datasets
Three datasets of reviews about Kindle devices, Harry Potter's series, and
the well-known IMDb movie reviews can be fetched using a unified interface.
For example:
```python
import quapy as qp
data = qp.datasets.fetch_reviews('kindle')
```
These datasets have been used in:
```
Esuli, A., Moreo, A., & Sebastiani, F. (2018, October).
A recurrent neural network for sentiment quantification.
In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management (pp. 1775-1778).
```
The list of reviews ids is available in:
```python
qp.datasets.REVIEWS_SENTIMENT_DATASETS
```
Some statistics of the fhe available datasets are summarized below:
| Dataset | classes | train size | test size | train prev | test prev | type |
|---|:---:|:---:|:---:|:---:|:---:|---|
| hp | 2 | 9533 | 18399 | [0.018, 0.982] | [0.065, 0.935] | text |
| kindle | 2 | 3821 | 21591 | [0.081, 0.919] | [0.063, 0.937] | text |
| imdb | 2 | 25000 | 25000 | [0.500, 0.500] | [0.500, 0.500] | text |
## Twitter Sentiment Datasets
11 Twitter datasets for sentiment analysis.
Text is not accessible, and the documents were made available
in tf-idf format. Each dataset presents two splits: a train/val
split for model selection purposes, and a train+val/test split
for model evaluation. The following code exemplifies how to load
a twitter dataset for model selection.
```python
import quapy as qp
data = qp.datasets.fetch_twitter('gasp', for_model_selection=True)
```
The datasets were used in:
```
Gao, W., & Sebastiani, F. (2015, August).
Tweet sentiment: From classification to quantification.
In 2015 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM) (pp. 97-104). IEEE.
```
Three of the datasets (semeval13, semeval14, and semeval15) share the
same training set (semeval), meaning that the training split one would get
when requesting any of them is the same. The dataset "semeval" can only
be requested with "for_model_selection=True".
The lists of the Twitter dataset's ids can be consulted in:
```python
# a list of 11 dataset ids that can be used for model selection or model evaluation
qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST
# 9 dataset ids in which "semeval13", "semeval14", and "semeval15" are replaced with "semeval"
qp.datasets.TWITTER_SENTIMENT_DATASETS_TRAIN
```
Some details can be found below:
| Dataset | classes | train size | test size | features | train prev | test prev | type |
|---|:---:|:---:|:---:|:---:|:---:|:---:|---|
| gasp | 3 | 8788 | 3765 | 694582 | [0.421, 0.496, 0.082] | [0.407, 0.507, 0.086] | sparse |
| hcr | 3 | 1594 | 798 | 222046 | [0.546, 0.211, 0.243] | [0.640, 0.167, 0.193] | sparse |
| omd | 3 | 1839 | 787 | 199151 | [0.463, 0.271, 0.266] | [0.437, 0.283, 0.280] | sparse |
| sanders | 3 | 2155 | 923 | 229399 | [0.161, 0.691, 0.148] | [0.164, 0.688, 0.148] | sparse |
| semeval13 | 3 | 11338 | 3813 | 1215742 | [0.159, 0.470, 0.372] | [0.158, 0.430, 0.412] | sparse |
| semeval14 | 3 | 11338 | 1853 | 1215742 | [0.159, 0.470, 0.372] | [0.109, 0.361, 0.530] | sparse |
| semeval15 | 3 | 11338 | 2390 | 1215742 | [0.159, 0.470, 0.372] | [0.153, 0.413, 0.434] | sparse |
| semeval16 | 3 | 8000 | 2000 | 889504 | [0.157, 0.351, 0.492] | [0.163, 0.341, 0.497] | sparse |
| sst | 3 | 2971 | 1271 | 376132 | [0.261, 0.452, 0.288] | [0.207, 0.481, 0.312] | sparse |
| wa | 3 | 2184 | 936 | 248563 | [0.305, 0.414, 0.281] | [0.282, 0.446, 0.272] | sparse |
| wb | 3 | 4259 | 1823 | 404333 | [0.270, 0.392, 0.337] | [0.274, 0.392, 0.335] | sparse |
## UCI Machine Learning
A set of 32 datasets from the [UCI Machine Learning repository](https://archive.ics.uci.edu/ml/datasets.php)
used in:
```
Pérez-Gállego, P., Quevedo, J. R., & del Coz, J. J. (2017).
Using ensembles for problems with characterizable changes
in data distribution: A case study on quantification.
Information Fusion, 34, 87-100.
```
The list does not exactly coincide with that used in Pérez-Gállego et al. 2017
since we were unable to find the datasets with ids "diabetes" and "phoneme".
These dataset can be loaded by calling, e.g.:
```python
import quapy as qp
data = qp.datasets.fetch_UCIDataset('yeast', verbose=True)
```
This call will return a _Dataset_ object in which the training and
test splits are randomly drawn, in a stratified manner, from the whole
collection at 70% and 30%, respectively. The _verbose=True_ option indicates
that the dataset description should be printed in standard output.
The original data is not split,
and some papers submit the entire collection to a kFCV validation.
In order to accommodate with these practices, one could first instantiate
the entire collection, and then creating a generator that will return one
training+test dataset at a time, following a kFCV protocol:
```python
import quapy as qp
collection = qp.datasets.fetch_UCILabelledCollection("yeast")
for data in qp.data.Dataset.kFCV(collection, nfolds=5, nrepeats=2):
...
```
Above code will allow to conduct a 2x5FCV evaluation on the "yeast" dataset.
All datasets come in numerical form (dense matrices); some statistics
are summarized below.
| Dataset | classes | instances | features | prev | type |
|---|:---:|:---:|:---:|:---:|---|
| acute.a | 2 | 120 | 6 | [0.508, 0.492] | dense |
| acute.b | 2 | 120 | 6 | [0.583, 0.417] | dense |
| balance.1 | 2 | 625 | 4 | [0.539, 0.461] | dense |
| balance.2 | 2 | 625 | 4 | [0.922, 0.078] | dense |
| balance.3 | 2 | 625 | 4 | [0.539, 0.461] | dense |
| breast-cancer | 2 | 683 | 9 | [0.350, 0.650] | dense |
| cmc.1 | 2 | 1473 | 9 | [0.573, 0.427] | dense |
| cmc.2 | 2 | 1473 | 9 | [0.774, 0.226] | dense |
| cmc.3 | 2 | 1473 | 9 | [0.653, 0.347] | dense |
| ctg.1 | 2 | 2126 | 22 | [0.222, 0.778] | dense |
| ctg.2 | 2 | 2126 | 22 | [0.861, 0.139] | dense |
| ctg.3 | 2 | 2126 | 22 | [0.917, 0.083] | dense |
| german | 2 | 1000 | 24 | [0.300, 0.700] | dense |
| haberman | 2 | 306 | 3 | [0.735, 0.265] | dense |
| ionosphere | 2 | 351 | 34 | [0.641, 0.359] | dense |
| iris.1 | 2 | 150 | 4 | [0.667, 0.333] | dense |
| iris.2 | 2 | 150 | 4 | [0.667, 0.333] | dense |
| iris.3 | 2 | 150 | 4 | [0.667, 0.333] | dense |
| mammographic | 2 | 830 | 5 | [0.514, 0.486] | dense |
| pageblocks.5 | 2 | 5473 | 10 | [0.979, 0.021] | dense |
| semeion | 2 | 1593 | 256 | [0.901, 0.099] | dense |
| sonar | 2 | 208 | 60 | [0.534, 0.466] | dense |
| spambase | 2 | 4601 | 57 | [0.606, 0.394] | dense |
| spectf | 2 | 267 | 44 | [0.794, 0.206] | dense |
| tictactoe | 2 | 958 | 9 | [0.653, 0.347] | dense |
| transfusion | 2 | 748 | 4 | [0.762, 0.238] | dense |
| wdbc | 2 | 569 | 30 | [0.627, 0.373] | dense |
| wine.1 | 2 | 178 | 13 | [0.669, 0.331] | dense |
| wine.2 | 2 | 178 | 13 | [0.601, 0.399] | dense |
| wine.3 | 2 | 178 | 13 | [0.730, 0.270] | dense |
| wine-q-red | 2 | 1599 | 11 | [0.465, 0.535] | dense |
| wine-q-white | 2 | 4898 | 11 | [0.335, 0.665] | dense |
| yeast | 2 | 1484 | 8 | [0.711, 0.289] | dense |
### Issues:
All datasets will be downloaded automatically the first time they are requested, and
stored in the _quapy_data_ folder for faster further reuse.
However, some datasets require special actions that at the moment are not fully
automated.
* Datasets with ids "ctg.1", "ctg.2", and "ctg.3" (_Cardiotocography Data Set_) load
an Excel file, which requires the user to install the _xlrd_ Python module in order
to open it.
* The dataset with id "pageblocks.5" (_Page Blocks Classification (5)_) needs to
open a "unix compressed file" (extension .Z), which is not directly doable with
standard Pythons packages like gzip or zip. This file would need to be uncompressed using
OS-dependent software manually. Information on how to do it will be printed the first
time the dataset is invoked.
## LeQua Datasets
QuaPy also provides the datasets used for the LeQua competition.
In brief, there are 4 tasks (T1A, T1B, T2A, T2B) having to do with text quantification
problems. Tasks T1A and T1B provide documents in vector form, while T2A and T2B provide
raw documents instead.
Tasks T1A and T2A are binary sentiment quantification problems, while T2A and T2B
are multiclass quantification problems consisting of estimating the class prevalence
values of 28 different merchandise products.
Every task consists of a training set, a set of validation samples (for model selection)
and a set of test samples (for evaluation). QuaPy returns this data as a LabelledCollection
(training) and two generation protocols (for validation and test samples), as follows:
```python
training, val_generator, test_generator = fetch_lequa2022(task=task)
```
See the `lequa2022_experiments.py` in the examples folder for further details on how to
carry out experiments using these datasets.
The datasets are downloaded only once, and stored for fast reuse.
Some statistics are summarized below:
| Dataset | classes | train size | validation samples | test samples | docs by sample | type |
|---------|:-------:|:----------:|:------------------:|:------------:|:----------------:|:--------:|
| T1A | 2 | 5000 | 1000 | 5000 | 250 | vector |
| T1B | 28 | 20000 | 1000 | 5000 | 1000 | vector |
| T2A | 2 | 5000 | 1000 | 5000 | 250 | text |
| T2B | 28 | 20000 | 1000 | 5000 | 1000 | text |
For further details on the datasets, we refer to the original
[paper](https://ceur-ws.org/Vol-3180/paper-146.pdf):
```
Esuli, A., Moreo, A., Sebastiani, F., & Sperduti, G. (2022).
A Detailed Overview of LeQua@ CLEF 2022: Learning to Quantify.
```
## Adding Custom Datasets
QuaPy provides data loaders for simple formats dealing with
text, following the format:
```
class-id \t first document's pre-processed text \n
class-id \t second document's pre-processed text \n
...
```
and sparse representations of the form:
```
{-1, 0, or +1} col(int):val(float) col(int):val(float) ... \n
...
```
The code in charge in loading a LabelledCollection is:
```python
@classmethod
def load(cls, path:str, loader_func:callable):
return LabelledCollection(*loader_func(path))
```
indicating that any _loader_func_ (e.g., a user-defined one) which
returns valid arguments for initializing a _LabelledCollection_ object will allow
to load any collection. In particular, the _LabelledCollection_ receives as
arguments the instances (as an iterable) and the labels (as an iterable) and,
additionally, the number of classes can be specified (it would otherwise be
inferred from the labels, but that requires at least one positive example for
all classes to be present in the collection).
The same _loader_func_ can be passed to a Dataset, along with two
paths, in order to create a training and test pair of _LabelledCollection_,
e.g.:
```python
import quapy as qp
train_path = '../my_data/train.dat'
test_path = '../my_data/test.dat'
def my_custom_loader(path):
with open(path, 'rb') as fin:
...
return instances, labels
data = qp.data.Dataset.load(train_path, test_path, my_custom_loader)
```
### Data Processing
QuaPy implements a number of preprocessing functions in the package _qp.data.preprocessing_, including:
* _text2tfidf_: tfidf vectorization
* _reduce_columns_: reducing the number of columns based on term frequency
* _standardize_: transforms the column values into z-scores (i.e., subtract the mean and normalizes by the standard deviation, so
that the column values have zero mean and unit variance).
* _index_: transforms textual tokens into lists of numeric ids)

View File

@ -1,169 +0,0 @@
# Evaluation
Quantification is an appealing tool in scenarios of dataset shift,
and particularly in scenarios of prior-probability shift.
That is, the interest in estimating the class prevalences arises
under the belief that those class prevalences might have changed
with respect to the ones observed during training.
In other words, one could simply return the training prevalence
as a predictor of the test prevalence if this change is assumed
to be unlikely (as is the case in general scenarios of
machine learning governed by the iid assumption).
In brief, quantification requires dedicated evaluation protocols,
which are implemented in QuaPy and explained here.
## Error Measures
The module quapy.error implements the following error measures for quantification:
* _mae_: mean absolute error
* _mrae_: mean relative absolute error
* _mse_: mean squared error
* _mkld_: mean Kullback-Leibler Divergence
* _mnkld_: mean normalized Kullback-Leibler Divergence
Functions _ae_, _rae_, _se_, _kld_, and _nkld_ are also available,
which return the individual errors (i.e., without averaging the whole).
Some errors of classification are also available:
* _acce_: accuracy error (1-accuracy)
* _f1e_: F-1 score error (1-F1 score)
The error functions implement the following interface, e.g.:
```python
mae(true_prevs, prevs_hat)
```
in which the first argument is a ndarray containing the true
prevalences, and the second argument is another ndarray with
the estimations produced by some method.
Some error functions, e.g., _mrae_, _mkld_, and _mnkld_, are
smoothed for numerical stability. In those cases, there is a
third argument, e.g.:
```python
def mrae(true_prevs, prevs_hat, eps=None): ...
```
indicating the value for the smoothing parameter epsilon.
Traditionally, this value is set to 1/(2T) in past literature,
with T the sampling size. One could either pass this value
to the function each time, or to set a QuaPy's environment
variable _SAMPLE_SIZE_ once, and omit this argument
thereafter (recommended);
e.g.:
```python
qp.environ['SAMPLE_SIZE'] = 100 # once for all
true_prev = np.asarray([0.5, 0.3, 0.2]) # let's assume 3 classes
estim_prev = np.asarray([0.1, 0.3, 0.6])
error = qp.error.mrae(true_prev, estim_prev)
print(f'mrae({true_prev}, {estim_prev}) = {error:.3f}')
```
will print:
```
mrae([0.500, 0.300, 0.200], [0.100, 0.300, 0.600]) = 0.914
```
Finally, it is possible to instantiate QuaPy's quantification
error functions from strings using, e.g.:
```python
error_function = qp.error.from_name('mse')
error = error_function(true_prev, estim_prev)
```
## Evaluation Protocols
An _evaluation protocol_ is an evaluation procedure that uses
one specific _sample generation procotol_ to genereate many
samples, typically characterized by widely varying amounts of
_shift_ with respect to the original distribution, that are then
used to evaluate the performance of a (trained) quantifier.
These protocols are explained in more detail in a dedicated [entry
in the wiki](Protocols.md). For the moment being, let us assume we already have
chosen and instantiated one specific such protocol, that we here
simply call _prot_. Let also assume our model is called
_quantifier_ and that our evaluatio measure of choice is
_mae_. The evaluation comes down to:
```python
mae = qp.evaluation.evaluate(quantifier, protocol=prot, error_metric='mae')
print(f'MAE = {mae:.4f}')
```
It is often desirable to evaluate our system using more than one
single evaluatio measure. In this case, it is convenient to generate
a _report_. A report in QuaPy is a dataframe accounting for all the
true prevalence values with their corresponding prevalence values
as estimated by the quantifier, along with the error each has given
rise.
```python
report = qp.evaluation.evaluation_report(quantifier, protocol=prot, error_metrics=['mae', 'mrae', 'mkld'])
```
From a pandas' dataframe, it is straightforward to visualize all the results,
and compute the averaged values, e.g.:
```python
pd.set_option('display.expand_frame_repr', False)
report['estim-prev'] = report['estim-prev'].map(F.strprev)
print(report)
print('Averaged values:')
print(report.mean())
```
This will produce an output like:
```
true-prev estim-prev mae mrae mkld
0 [0.308, 0.692] [0.314, 0.686] 0.005649 0.013182 0.000074
1 [0.896, 0.104] [0.909, 0.091] 0.013145 0.069323 0.000985
2 [0.848, 0.152] [0.809, 0.191] 0.039063 0.149806 0.005175
3 [0.016, 0.984] [0.033, 0.967] 0.017236 0.487529 0.005298
4 [0.728, 0.272] [0.751, 0.249] 0.022769 0.057146 0.001350
... ... ... ... ... ...
4995 [0.72, 0.28] [0.698, 0.302] 0.021752 0.053631 0.001133
4996 [0.868, 0.132] [0.888, 0.112] 0.020490 0.088230 0.001985
4997 [0.292, 0.708] [0.298, 0.702] 0.006149 0.014788 0.000090
4998 [0.24, 0.76] [0.220, 0.780] 0.019950 0.054309 0.001127
4999 [0.948, 0.052] [0.965, 0.035] 0.016941 0.165776 0.003538
[5000 rows x 5 columns]
Averaged values:
mae 0.023588
mrae 0.108779
mkld 0.003631
dtype: float64
Process finished with exit code 0
```
Alternatively, we can simply generate all the predictions by:
```python
true_prevs, estim_prevs = qp.evaluation.prediction(quantifier, protocol=prot)
```
All the evaluation functions implement specific optimizations for speeding-up
the evaluation of aggregative quantifiers (i.e., of instances of _AggregativeQuantifier_).
The optimization comes down to generating classification predictions (either crisp or soft)
only once for the entire test set, and then applying the sampling procedure to the
predictions, instead of generating samples of instances and then computing the
classification predictions every time. This is only possible when the protocol
is an instance of _OnLabelledCollectionProtocol_. The optimization is only
carried out when the number of classification predictions thus generated would be
smaller than the number of predictions required for the entire protocol; e.g.,
if the original dataset contains 1M instances, but the protocol is such that it would
at most generate 20 samples of 100 instances, then it would be preferable to postpone the
classification for each sample. This behaviour is indicated by setting
_aggr_speedup="auto"_. Conversely, when indicating _aggr_speedup="force"_ QuaPy will
precompute all the predictions irrespectively of the number of instances and number of samples.
Finally, this can be deactivated by setting _aggr_speedup=False_. Note that this optimization
is not only applied for the final evaluation, but also for the internal evaluations carried
out during _model selection_. Since these are typically many, the heuristic can help reduce the
execution time a lot.

View File

@ -1,56 +0,0 @@
Installation
------------
QuaPy can be easily installed via `pip`
::
pip install quapy
See `pip page <https://pypi.org/project/QuaPy/>`_ for older versions.
Requirements
************
* scikit-learn, numpy, scipy
* pytorch (for QuaNet)
* svmperf patched for quantification (see below)
* joblib
* tqdm
* pandas, xlrd
* matplotlib
SVM-perf with quantification-oriented losses
********************************************
In order to run experiments involving SVM(Q), SVM(KLD), SVM(NKLD),
SVM(AE), or SVM(RAE), you have to first download the
`svmperf <http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html>`_
package, apply the patch
`svm-perf-quantification-ext.patch <https://github.com/HLT-ISTI/QuaPy/blob/master/svm-perf-quantification-ext.patch>`_,
and compile the sources.
The script
`prepare_svmperf.sh <https://github.com/HLT-ISTI/QuaPy/blob/master/prepare_svmperf.sh>`_,
does all the job. Simply run:
::
./prepare_svmperf.sh
The resulting directory `./svm_perf_quantification` contains the
patched version of `svmperf` with quantification-oriented losses.
The
`svm-perf-quantification-ext.patch <https://github.com/HLT-ISTI/QuaPy/blob/master/svm-perf-quantification-ext.patch>`_
is an extension of the patch made available by
`Esuli et al. 2015 <https://dl.acm.org/doi/abs/10.1145/2700406?casa_token=8D2fHsGCVn0AAAAA:ZfThYOvrzWxMGfZYlQW_y8Cagg-o_l6X_PcF09mdETQ4Tu7jK98mxFbGSXp9ZSO14JkUIYuDGFG0>`_
that allows SVMperf to optimize for
the `Q` measure as proposed by
`Barranquero et al. 2015 <https://www.sciencedirect.com/science/article/abs/pii/S003132031400291X>`_
and for the `KLD` and `NKLD` as proposed by
`Esuli et al. 2015 <https://dl.acm.org/doi/abs/10.1145/2700406?casa_token=8D2fHsGCVn0AAAAA:ZfThYOvrzWxMGfZYlQW_y8Cagg-o_l6X_PcF09mdETQ4Tu7jK98mxFbGSXp9ZSO14JkUIYuDGFG0>`_
for quantification.
This patch extends the former by also allowing SVMperf to optimize for
`AE` and `RAE`.

View File

@ -1,438 +0,0 @@
# Quantification Methods
Quantification methods can be categorized as belonging to
_aggregative_ and _non-aggregative_ groups.
Most methods included in QuaPy at the moment are of type _aggregative_
(though we plan to add many more methods in the near future), i.e.,
are methods characterized by the fact that
quantification is performed as an aggregation function of the individual
products of classification.
Any quantifier in QuaPy shoud extend the class _BaseQuantifier_,
and implement some abstract methods:
```python
@abstractmethod
def fit(self, data: LabelledCollection): ...
@abstractmethod
def quantify(self, instances): ...
```
The meaning of those functions should be familiar to those
used to work with scikit-learn since the class structure of QuaPy
is directly inspired by scikit-learn's _Estimators_. Functions
_fit_ and _quantify_ are used to train the model and to provide
class estimations (the reason why
scikit-learn' structure has not been adopted _as is_ in QuaPy responds to
the fact that scikit-learn's _predict_ function is expected to return
one output for each input element --e.g., a predicted label for each
instance in a sample-- while in quantification the output for a sample
is one single array of class prevalences).
Quantifiers also extend from scikit-learn's `BaseEstimator`, in order
to simplify the use of _set_params_ and _get_params_ used in
[model selector](https://github.com/HLT-ISTI/QuaPy/wiki/Model-Selection).
## Aggregative Methods
All quantification methods are implemented as part of the
_qp.method_ package. In particular, _aggregative_ methods are defined in
_qp.method.aggregative_, and extend _AggregativeQuantifier(BaseQuantifier)_.
The methods that any _aggregative_ quantifier must implement are:
```python
@abstractmethod
def fit(self, data: LabelledCollection, fit_learner=True): ...
@abstractmethod
def aggregate(self, classif_predictions:np.ndarray): ...
```
since, as mentioned before, aggregative methods base their prediction on the
individual predictions of a classifier. Indeed, a default implementation
of _BaseQuantifier.quantify_ is already provided, which looks like:
```python
def quantify(self, instances):
classif_predictions = self.classify(instances)
return self.aggregate(classif_predictions)
```
Aggregative quantifiers are expected to maintain a classifier (which is
accessed through the _@property_ _classifier_). This classifier is
given as input to the quantifier, and can be already fit
on external data (in which case, the _fit_learner_ argument should
be set to False), or be fit by the quantifier's fit (default).
Another class of _aggregative_ methods are the _probabilistic_
aggregative methods, that should inherit from the abstract class
_AggregativeProbabilisticQuantifier(AggregativeQuantifier)_.
The particularity of _probabilistic_ aggregative methods (w.r.t.
non-probabilistic ones), is that the default quantifier is defined
in terms of the posterior probabilities returned by a probabilistic
classifier, and not by the crisp decisions of a hard classifier.
In any case, the interface _classify(instances)_ remains unchanged.
One advantage of _aggregative_ methods (either probabilistic or not)
is that the evaluation according to any sampling procedure (e.g.,
the [artificial sampling protocol](https://github.com/HLT-ISTI/QuaPy/wiki/Evaluation))
can be achieved very efficiently, since the entire set can be pre-classified
once, and the quantification estimations for different samples can directly
reuse these predictions, without requiring to classify each element every time.
QuaPy leverages this property to speed-up any procedure having to do with
quantification over samples, as is customarily done in model selection or
in evaluation.
### The Classify & Count variants
QuaPy implements the four CC variants, i.e.:
* _CC_ (Classify & Count), the simplest aggregative quantifier; one that
simply relies on the label predictions of a classifier to deliver class estimates.
* _ACC_ (Adjusted Classify & Count), the adjusted variant of CC.
* _PCC_ (Probabilistic Classify & Count), the probabilistic variant of CC that
relies on the soft estimations (or posterior probabilities) returned by a (probabilistic) classifier.
* _PACC_ (Probabilistic Adjusted Classify & Count), the adjusted variant of PCC.
The following code serves as a complete example using CC equipped
with a SVM as the classifier:
```python
import quapy as qp
import quapy.functional as F
from sklearn.svm import LinearSVC
training, test = qp.datasets.fetch_twitter('hcr', pickle=True).train_test
# instantiate a classifier learner, in this case a SVM
svm = LinearSVC()
# instantiate a Classify & Count with the SVM
# (an alias is available in qp.method.aggregative.ClassifyAndCount)
model = qp.method.aggregative.CC(svm)
model.fit(training)
estim_prevalence = model.quantify(test.instances)
```
The same code could be used to instantiate an ACC, by simply replacing
the instantiation of the model with:
```python
model = qp.method.aggregative.ACC(svm)
```
Note that the adjusted variants (ACC and PACC) need to estimate
some parameters for performing the adjustment (e.g., the
_true positive rate_ and the _false positive rate_ in case of
binary classification) that are estimated on a validation split
of the labelled set. In this case, the __init__ method of
ACC defines an additional parameter, _val_split_ which, by
default, is set to 0.4 and so, the 40% of the labelled data
will be used for estimating the parameters for adjusting the
predictions. This parameters can also be set with an integer,
indicating that the parameters should be estimated by means of
_k_-fold cross-validation, for which the integer indicates the
number _k_ of folds. Finally, _val_split_ can be set to a
specific held-out validation set (i.e., an instance of _LabelledCollection_).
The specification of _val_split_ can be
postponed to the invokation of the fit method (if _val_split_ was also
set in the constructor, the one specified at fit time would prevail),
e.g.:
```python
model = qp.method.aggregative.ACC(svm)
# perform 5-fold cross validation for estimating ACC's parameters
# (overrides the default val_split=0.4 in the constructor)
model.fit(training, val_split=5)
```
The following code illustrates the case in which PCC is used:
```python
model = qp.method.aggregative.PCC(svm)
model.fit(training)
estim_prevalence = model.quantify(test.instances)
print('classifier:', model.classifier)
```
In this case, QuaPy will print:
```
The learner LinearSVC does not seem to be probabilistic. The learner will be calibrated.
classifier: CalibratedClassifierCV(base_estimator=LinearSVC(), cv=5)
```
The first output indicates that the learner (_LinearSVC_ in this case)
is not a probabilistic classifier (i.e., it does not implement the
_predict_proba_ method) and so, the classifier will be converted to
a probabilistic one through [calibration](https://scikit-learn.org/stable/modules/calibration.html).
As a result, the classifier that is printed in the second line points
to a _CalibratedClassifier_ instance. Note that calibration can only
be applied to hard classifiers when _fit_learner=True_; an exception
will be raised otherwise.
Lastly, everything we said aboud ACC and PCC
applies to PACC as well.
### Expectation Maximization (EMQ)
The Expectation Maximization Quantifier (EMQ), also known as
the SLD, is available at _qp.method.aggregative.EMQ_ or via the
alias _qp.method.aggregative.ExpectationMaximizationQuantifier_.
The method is described in:
_Saerens, M., Latinne, P., and Decaestecker, C. (2002). Adjusting the outputs of a classifier
to new a priori probabilities: A simple procedure. Neural Computation, 14(1):2141._
EMQ works with a probabilistic classifier (if the classifier
given as input is a hard one, a calibration will be attempted).
Although this method was originally proposed for improving the
posterior probabilities of a probabilistic classifier, and not
for improving the estimation of prior probabilities, EMQ ranks
almost always among the most effective quantifiers in the
experiments we have carried out.
An example of use can be found below:
```python
import quapy as qp
from sklearn.linear_model import LogisticRegression
dataset = qp.datasets.fetch_twitter('hcr', pickle=True)
model = qp.method.aggregative.EMQ(LogisticRegression())
model.fit(dataset.training)
estim_prevalence = model.quantify(dataset.test.instances)
```
_New in v0.1.7_: EMQ now accepts two new parameters in the construction method, namely
_exact_train_prev_ which allows to use the true training prevalence as the departing
prevalence estimation (default behaviour), or instead an approximation of it as
suggested by [Alexandari et al. (2020)](http://proceedings.mlr.press/v119/alexandari20a.html)
(by setting _exact_train_prev=False_).
The other parameter is _recalib_ which allows to indicate a calibration method, among those
proposed by [Alexandari et al. (2020)](http://proceedings.mlr.press/v119/alexandari20a.html),
including the Bias-Corrected Temperature Scaling, Vector Scaling, etc.
See the API documentation for further details.
### Hellinger Distance y (HDy)
Implementation of the method based on the Hellinger Distance y (HDy) proposed by
[González-Castro, V., Alaiz-Rodrı́guez, R., and Alegre, E. (2013). Class distribution
estimation based on the Hellinger distance. Information Sciences, 218:146164.](https://www.sciencedirect.com/science/article/pii/S0020025512004069)
It is implemented in _qp.method.aggregative.HDy_ (also accessible
through the allias _qp.method.aggregative.HellingerDistanceY_).
This method works with a probabilistic classifier (hard classifiers
can be used as well and will be calibrated) and requires a validation
set to estimate parameter for the mixture model. Just like
ACC and PACC, this quantifier receives a _val_split_ argument
in the constructor (or in the fit method, in which case the previous
value is overridden) that can either be a float indicating the proportion
of training data to be taken as the validation set (in a random
stratified split), or a validation set (i.e., an instance of
_LabelledCollection_) itself.
HDy was proposed as a binary classifier and the implementation
provided in QuaPy accepts only binary datasets.
The following code shows an example of use:
```python
import quapy as qp
from sklearn.linear_model import LogisticRegression
# load a binary dataset
dataset = qp.datasets.fetch_reviews('hp', pickle=True)
qp.data.preprocessing.text2tfidf(dataset, min_df=5, inplace=True)
model = qp.method.aggregative.HDy(LogisticRegression())
model.fit(dataset.training)
estim_prevalence = model.quantify(dataset.test.instances)
```
_New in v0.1.7:_ QuaPy now provides an implementation of the generalized
"Distribution Matching" approaches for multiclass, inspired by the framework
of [Firat (2016)](https://arxiv.org/abs/1606.00868). One can instantiate
a variant of HDy for multiclass quantification as follows:
```python
mutliclassHDy = qp.method.aggregative.DistributionMatching(classifier=LogisticRegression(), divergence='HD', cdf=False)
```
_New in v0.1.7:_ QuaPy now provides an implementation of the "DyS"
framework proposed by [Maletzke et al (2020)](https://ojs.aaai.org/index.php/AAAI/article/view/4376)
and the "SMM" method proposed by [Hassan et al (2019)](https://ieeexplore.ieee.org/document/9260028)
(thanks to _Pablo González_ for the contributions!)
### Threshold Optimization methods
_New in v0.1.7:_ QuaPy now implements Forman's threshold optimization methods;
see, e.g., [(Forman 2006)](https://dl.acm.org/doi/abs/10.1145/1150402.1150423)
and [(Forman 2008)](https://link.springer.com/article/10.1007/s10618-008-0097-y).
These include: T50, MAX, X, Median Sweep (MS), and its variant MS2.
### Explicit Loss Minimization
The Explicit Loss Minimization (ELM) represent a family of methods
based on structured output learning, i.e., quantifiers relying on
classifiers that have been optimized targeting a
quantification-oriented evaluation measure.
The original methods are implemented in QuaPy as classify & count (CC)
quantifiers that use Joachim's [SVMperf](https://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html)
as the underlying classifier, properly set to optimize for the desired loss.
In QuaPy, this can be more achieved by calling the functions:
* _newSVMQ_: returns the quantification method called SVM(Q) that optimizes for the metric _Q_ defined
in [_Barranquero, J., Díez, J., and del Coz, J. J. (2015). Quantification-oriented learning based
on reliable classifiers. Pattern Recognition, 48(2):591604._](https://www.sciencedirect.com/science/article/pii/S003132031400291X)
* _newSVMKLD_ and _newSVMNKLD_: returns the quantification method called SVM(KLD) and SVM(nKLD), standing for
Kullback-Leibler Divergence and Normalized Kullback-Leibler Divergence, as proposed in [_Esuli, A. and Sebastiani, F. (2015).
Optimizing text quantifiers for multivariate loss functions.
ACM Transactions on Knowledge Discovery and Data, 9(4):Article 27._](https://dl.acm.org/doi/abs/10.1145/2700406)
* _newSVMAE_ and _newSVMRAE_: returns a quantification method called SVM(AE) and SVM(RAE) that optimizes for the (Mean) Absolute Error and for the
(Mean) Relative Absolute Error, as first used by
[_Moreo, A. and Sebastiani, F. (2021). Tweet sentiment quantification: An experimental re-evaluation. PLOS ONE 17 (9), 1-23._](https://arxiv.org/abs/2011.02552)
the last two methods (SVM(AE) and SVM(RAE)) have been implemented in
QuaPy in order to make available ELM variants for what nowadays
are considered the most well-behaved evaluation metrics in quantification.
In order to make these models work, you would need to run the script
_prepare_svmperf.sh_ (distributed along with QuaPy) that
downloads _SVMperf_' source code, applies a patch that
implements the quantification oriented losses, and compiles the
sources.
If you want to add any custom loss, you would need to modify
the source code of _SVMperf_ in order to implement it, and
assign a valid loss code to it. Then you must re-compile
the whole thing and instantiate the quantifier in QuaPy
as follows:
```python
# you can either set the path to your custom svm_perf_quantification implementation
# in the environment variable, or as an argument to the constructor of ELM
qp.environ['SVMPERF_HOME'] = './path/to/svm_perf_quantification'
# assign an alias to your custom loss and the id you have assigned to it
svmperf = qp.classification.svmperf.SVMperf
svmperf.valid_losses['mycustomloss'] = 28
# instantiate the ELM method indicating the loss
model = qp.method.aggregative.ELM(loss='mycustomloss')
```
All ELM are binary quantifiers since they rely on _SVMperf_, that
currently supports only binary classification.
ELM variants (any binary quantifier in general) can be extended
to operate in single-label scenarios trivially by adopting a
"one-vs-all" strategy (as, e.g., in
[_Gao, W. and Sebastiani, F. (2016). From classification to quantification in tweet sentiment
analysis. Social Network Analysis and Mining, 6(19):122_](https://link.springer.com/article/10.1007/s13278-016-0327-z)).
In QuaPy this is possible by using the _OneVsAll_ class.
There are two ways for instantiating this class, _OneVsAllGeneric_ that works for
any quantifier, and _OneVsAllAggregative_ that is optimized for aggregative quantifiers.
In general, you can simply use the _getOneVsAll_ function and QuaPy will choose
the more convenient of the two.
```python
import quapy as qp
from quapy.method.aggregative import SVMQ
# load a single-label dataset (this one contains 3 classes)
dataset = qp.datasets.fetch_twitter('hcr', pickle=True)
# let qp know where svmperf is
qp.environ['SVMPERF_HOME'] = '../svm_perf_quantification'
model = getOneVsAll(SVMQ(), n_jobs=-1) # run them on parallel
model.fit(dataset.training)
estim_prevalence = model.quantify(dataset.test.instances)
```
Check the examples _[explicit_loss_minimization.py](..%2Fexamples%2Fexplicit_loss_minimization.py)_
and [one_vs_all.py](..%2Fexamples%2Fone_vs_all.py) for more details.
## Meta Models
By _meta_ models we mean quantification methods that are defined on top of other
quantification methods, and that thus do not squarely belong to the aggregative nor
the non-aggregative group (indeed, _meta_ models could use quantifiers from any of those
groups).
_Meta_ models are implemented in the _qp.method.meta_ module.
### Ensembles
QuaPy implements (some of) the variants proposed in:
* [_Pérez-Gállego, P., Quevedo, J. R., & del Coz, J. J. (2017).
Using ensembles for problems with characterizable changes in data distribution: A case study on quantification.
Information Fusion, 34, 87-100._](https://www.sciencedirect.com/science/article/pii/S1566253516300628)
* [_Pérez-Gállego, P., Castano, A., Quevedo, J. R., & del Coz, J. J. (2019).
Dynamic ensemble selection for quantification tasks.
Information Fusion, 45, 1-15._](https://www.sciencedirect.com/science/article/pii/S1566253517303652)
The following code shows how to instantiate an Ensemble of 30 _Adjusted Classify & Count_ (ACC)
quantifiers operating with a _Logistic Regressor_ (LR) as the base classifier, and using the
_average_ as the aggregation policy (see the original article for further details).
The last parameter indicates to use all processors for parallelization.
```python
import quapy as qp
from quapy.method.aggregative import ACC
from quapy.method.meta import Ensemble
from sklearn.linear_model import LogisticRegression
dataset = qp.datasets.fetch_UCIDataset('haberman')
model = Ensemble(quantifier=ACC(LogisticRegression()), size=30, policy='ave', n_jobs=-1)
model.fit(dataset.training)
estim_prevalence = model.quantify(dataset.test.instances)
```
Other aggregation policies implemented in QuaPy include:
* 'ptr' for applying a dynamic selection based on the training prevalence of the ensemble's members
* 'ds' for applying a dynamic selection based on the Hellinger Distance
* _any valid quantification measure_ (e.g., 'mse') for performing a static selection based on
the performance estimated for each member of the ensemble in terms of that evaluation metric.
When using any of the above options, it is important to set the _red_size_ parameter, which
informs of the number of members to retain.
Please, check the [model selection](https://github.com/HLT-ISTI/QuaPy/wiki/Model-Selection)
wiki if you want to optimize the hyperparameters of ensemble for classification or quantification.
### The QuaNet neural network
QuaPy offers an implementation of QuaNet, a deep learning model presented in:
[_Esuli, A., Moreo, A., & Sebastiani, F. (2018, October).
A recurrent neural network for sentiment quantification.
In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management (pp. 1775-1778)._](https://dl.acm.org/doi/abs/10.1145/3269206.3269287)
This model requires _torch_ to be installed.
QuaNet also requires a classifier that can provide embedded representations
of the inputs.
In the original paper, QuaNet was tested using an LSTM as the base classifier.
In the following example, we show an instantiation of QuaNet that instead uses CNN as a probabilistic classifier, taking its last layer representation as the document embedding:
```python
import quapy as qp
from quapy.method.meta import QuaNet
from quapy.classification.neural import NeuralClassifierTrainer, CNNnet
# use samples of 100 elements
qp.environ['SAMPLE_SIZE'] = 100
# load the kindle dataset as text, and convert words to numerical indexes
dataset = qp.datasets.fetch_reviews('kindle', pickle=True)
qp.data.preprocessing.index(dataset, min_df=5, inplace=True)
# the text classifier is a CNN trained by NeuralClassifierTrainer
cnn = CNNnet(dataset.vocabulary_size, dataset.n_classes)
learner = NeuralClassifierTrainer(cnn, device='cuda')
# train QuaNet
model = QuaNet(learner, device='cuda')
model.fit(dataset.training)
estim_prevalence = model.quantify(dataset.test.instances)
```

View File

@ -1,150 +0,0 @@
# Model Selection
As a supervised machine learning task, quantification methods
can strongly depend on a good choice of model hyper-parameters.
The process whereby those hyper-parameters are chosen is
typically known as _Model Selection_, and typically consists of
testing different settings and picking the one that performed
best in a held-out validation set in terms of any given
evaluation measure.
## Targeting a Quantification-oriented loss
The task being optimized determines the evaluation protocol,
i.e., the criteria according to which the performance of
any given method for solving is to be assessed.
As a task on its own right, quantification should impose
its own model selection strategies, i.e., strategies
aimed at finding appropriate configurations
specifically designed for the task of quantification.
Quantification has long been regarded as an add-on of
classification, and thus the model selection strategies
customarily adopted in classification have simply been
applied to quantification (see the next section).
It has been argued in [Moreo, Alejandro, and Fabrizio Sebastiani.
Re-Assessing the "Classify and Count" Quantification Method.
ECIR 2021: Advances in Information Retrieval pp 7591.](https://link.springer.com/chapter/10.1007/978-3-030-72240-1_6)
that specific model selection strategies should
be adopted for quantification. That is, model selection
strategies for quantification should target
quantification-oriented losses and be tested in a variety
of scenarios exhibiting different degrees of prior
probability shift.
The class _qp.model_selection.GridSearchQ_ implements a grid-search exploration over the space of
hyper-parameter combinations that [evaluates](https://github.com/HLT-ISTI/QuaPy/wiki/Evaluation)
each combination of hyper-parameters by means of a given quantification-oriented
error metric (e.g., any of the error functions implemented
in _qp.error_) and according to a
[sampling generation protocol](https://github.com/HLT-ISTI/QuaPy/wiki/Protocols).
The following is an example (also included in the examples folder) of model selection for quantification:
```python
import quapy as qp
from quapy.protocol import APP
from quapy.method.aggregative import DistributionMatching
from sklearn.linear_model import LogisticRegression
import numpy as np
"""
In this example, we show how to perform model selection on a DistributionMatching quantifier.
"""
model = DistributionMatching(LogisticRegression())
qp.environ['SAMPLE_SIZE'] = 100
qp.environ['N_JOBS'] = -1 # explore hyper-parameters in parallel
training, test = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=5).train_test
# The model will be returned by the fit method of GridSearchQ.
# Every combination of hyper-parameters will be evaluated by confronting the
# quantifier thus configured against a series of samples generated by means
# of a sample generation protocol. For this example, we will use the
# artificial-prevalence protocol (APP), that generates samples with prevalence
# values in the entire range of values from a grid (e.g., [0, 0.1, 0.2, ..., 1]).
# We devote 30% of the dataset for this exploration.
training, validation = training.split_stratified(train_prop=0.7)
protocol = APP(validation)
# We will explore a classification-dependent hyper-parameter (e.g., the 'C'
# hyper-parameter of LogisticRegression) and a quantification-dependent hyper-parameter
# (e.g., the number of bins in a DistributionMatching quantifier.
# Classifier-dependent hyper-parameters have to be marked with a prefix "classifier__"
# in order to let the quantifier know this hyper-parameter belongs to its underlying
# classifier.
param_grid = {
'classifier__C': np.logspace(-3,3,7),
'nbins': [8, 16, 32, 64],
}
model = qp.model_selection.GridSearchQ(
model=model,
param_grid=param_grid,
protocol=protocol,
error='mae', # the error to optimize is the MAE (a quantification-oriented loss)
refit=True, # retrain on the whole labelled set once done
verbose=True # show information as the process goes on
).fit(training)
print(f'model selection ended: best hyper-parameters={model.best_params_}')
model = model.best_model_
# evaluation in terms of MAE
# we use the same evaluation protocol (APP) on the test set
mae_score = qp.evaluation.evaluate(model, protocol=APP(test), error_metric='mae')
print(f'MAE={mae_score:.5f}')
```
In this example, the system outputs:
```
[GridSearchQ]: starting model selection with self.n_jobs =-1
[GridSearchQ]: hyperparams={'classifier__C': 0.01, 'nbins': 64} got mae score 0.04021 [took 1.1356s]
[GridSearchQ]: hyperparams={'classifier__C': 0.01, 'nbins': 32} got mae score 0.04286 [took 1.2139s]
[GridSearchQ]: hyperparams={'classifier__C': 0.01, 'nbins': 16} got mae score 0.04888 [took 1.2491s]
[GridSearchQ]: hyperparams={'classifier__C': 0.001, 'nbins': 8} got mae score 0.05163 [took 1.5372s]
[...]
[GridSearchQ]: hyperparams={'classifier__C': 1000.0, 'nbins': 32} got mae score 0.02445 [took 2.9056s]
[GridSearchQ]: optimization finished: best params {'classifier__C': 100.0, 'nbins': 32} (score=0.02234) [took 7.3114s]
[GridSearchQ]: refitting on the whole development set
model selection ended: best hyper-parameters={'classifier__C': 100.0, 'nbins': 32}
MAE=0.03102
```
The parameter _val_split_ can alternatively be used to indicate
a validation set (i.e., an instance of _LabelledCollection_) instead
of a proportion. This could be useful if one wants to have control
on the specific data split to be used across different model selection
experiments.
## Targeting a Classification-oriented loss
Optimizing a model for quantification could rather be
computationally costly.
In aggregative methods, one could alternatively try to optimize
the classifier's hyper-parameters for classification.
Although this is theoretically suboptimal, many articles in
quantification literature have opted for this strategy.
In QuaPy, this is achieved by simply instantiating the
classifier learner as a GridSearchCV from scikit-learn.
The following code illustrates how to do that:
```python
learner = GridSearchCV(
LogisticRegression(),
param_grid={'C': np.logspace(-4, 5, 10), 'class_weight': ['balanced', None]},
cv=5)
model = DistributionMatching(learner).fit(dataset.training)
```
However, this is conceptually flawed, since the model should be
optimized for the task at hand (quantification), and not for a surrogate task (classification),
i.e., the model should be requested to deliver low quantification errors, rather
than low classification errors.

View File

@ -1,250 +0,0 @@
# Plotting
The module _qp.plot_ implements some basic plotting functions
that can help analyse the performance of a quantification method.
All plotting functions receive as inputs the outcomes of
some experiments and include, for each experiment,
the following three main arguments:
* _method_names_ a list containing the names of the quantification methods
* _true_prevs_ a list containing matrices of true prevalences
* _estim_prevs_ a list containing matrices of estimated prevalences
(should be of the same shape as the corresponding matrix in _true_prevs_)
Note that a method (as indicated by a name in _method_names_) can
appear more than once. This could occur when various datasets are
involved in the experiments. In this case, all experiments for the
method will be merged and the plot will represent the method's
performance across various datasets.
This is a very simple example of a valid input for the plotting functions:
```python
method_names = ['classify & count', 'EMQ', 'classify & count']
true_prevs = [
np.array([[0.5, 0.5], [0.25, 0.75]]),
np.array([[0.0, 1.0], [0.25, 0.75], [0.0, 0.1]]),
np.array([[0.0, 1.0], [0.25, 0.75], [0.0, 0.1]]),
]
estim_prevs = [
np.array([[0.45, 0.55], [0.6, 0.4]]),
np.array([[0.0, 1.0], [0.5, 0.5], [0.2, 0.8]]),
np.array([[0.1, 0.9], [0.3, 0.7], [0.0, 0.1]]),
]
```
in which the _classify & count_ has been tested in two datasets and
the _EMQ_ method has been tested only in one dataset. For the first
experiment, only two (binary) quantifications have been tested,
while for the second and third experiments three instances have
been tested.
In general, we would like to test the performance of the
quantification methods across different scenarios showcasing
the accuracy of the quantifier in predicting class prevalences
for a wide range of prior distributions. This can easily be
achieved by means of the
[artificial sampling protocol](https://github.com/HLT-ISTI/QuaPy/wiki/Protocols)
that is implemented in QuaPy.
The following code shows how to perform one simple experiment
in which the 4 _CC-variants_, all equipped with a linear SVM, are
applied to one binary dataset of reviews about _Kindle_ devices and
tested across the entire spectrum of class priors (taking 21 splits
of the interval [0,1], i.e., using prevalence steps of 0.05, and
generating 100 random samples at each prevalence).
```python
import quapy as qp
from protocol import APP
from quapy.method.aggregative import CC, ACC, PCC, PACC
from sklearn.svm import LinearSVC
qp.environ['SAMPLE_SIZE'] = 500
def gen_data():
def base_classifier():
return LinearSVC(class_weight='balanced')
def models():
yield 'CC', CC(base_classifier())
yield 'ACC', ACC(base_classifier())
yield 'PCC', PCC(base_classifier())
yield 'PACC', PACC(base_classifier())
train, test = qp.datasets.fetch_reviews('kindle', tfidf=True, min_df=5).train_test
method_names, true_prevs, estim_prevs, tr_prevs = [], [], [], []
for method_name, model in models():
model.fit(train)
true_prev, estim_prev = qp.evaluation.prediction(model, APP(test, repeats=100, random_state=0))
method_names.append(method_name)
true_prevs.append(true_prev)
estim_prevs.append(estim_prev)
tr_prevs.append(train.prevalence())
return method_names, true_prevs, estim_prevs, tr_prevs
method_names, true_prevs, estim_prevs, tr_prevs = gen_data()
````
the plots that can be generated are explained below.
## Diagonal Plot
The _diagonal_ plot shows a very insightful view of the
quantifier's performance. It plots the predicted class
prevalence (in the y-axis) against the true class prevalence
(in the x-axis). Unfortunately, it is limited to binary quantification,
although one can simply generate as many _diagonal_ plots as
classes there are by indicating which class should be considered
the target of the plot.
The following call will produce the plot:
```python
qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, train_prev=tr_prevs[0], savepath='./plots/bin_diag.png')
```
the last argument is optional, and indicates the path where to save
the plot (the file extension will determine the format -- typical extensions
are '.png' or '.pdf'). If this path is not provided, then the plot
will be shown but not saved.
The resulting plot should look like:
![diagonal plot on Kindle](./wiki_examples/selected_plots/bin_diag.png)
Note that in this case, we are also indicating the training
prevalence, which is plotted in the diagonal a as cyan dot.
The color bands indicate the standard deviations of the predictions,
and can be hidden by setting the argument _show_std=False_ (see
the complete list of arguments in the documentation).
Finally, note how most quantifiers, and specially the "unadjusted"
variants CC and PCC, are strongly biased towards the
prevalence seen during training.
## Quantification bias
This plot aims at evincing the bias that any quantifier
displays with respect to the training prevalences by
means of [box plots](https://en.wikipedia.org/wiki/Box_plot).
This plot can be generated by:
```python
qp.plot.binary_bias_global(method_names, true_prevs, estim_prevs, savepath='./plots/bin_bias.png')
```
and should look like:
![bias plot on Kindle](./wiki_examples/selected_plots/bin_bias.png)
The box plots show some interesting facts:
* all methods are biased towards the training prevalence but specially
so CC and PCC (an unbiased quantifier would have a box centered at 0)
* the bias is always positive, indicating that all methods tend to
overestimate the positive class prevalence
* CC and PCC have high variability while ACC and specially PACC exhibit
lower variability.
Again, these plots could be generated for experiments ranging across
different datasets, and the plot will merge all data accordingly.
Another illustrative example can be shown that consists of
training different CC quantifiers trained at different
(artificially sampled) training prevalences.
For this example, we generate training samples of 5000
documents containing 10%, 20%, ..., 90% of positives from the
IMDb dataset, and generate the bias plot again.
This example can be run by rewritting the _gen_data()_ function
like this:
```python
def gen_data():
train, test = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=5).train_test
model = CC(LinearSVC())
method_data = []
for training_prevalence in np.linspace(0.1, 0.9, 9):
training_size = 5000
# since the problem is binary, it suffices to specify the negative prevalence, since the positive is constrained
train_sample = train.sampling(training_size, 1-training_prevalence)
model.fit(train_sample)
true_prev, estim_prev = qp.evaluation.prediction(model, APP(test, repeats=100, random_state=0))
method_name = 'CC$_{'+f'{int(100*training_prevalence)}' + '\%}$'
method_data.append((method_name, true_prev, estim_prev, train_sample.prevalence()))
return zip(*method_data)
```
and the plot should now look like:
![bias plot on IMDb](./wiki_examples/selected_plots/bin_bias_cc.png)
which clearly shows a negative bias for CC variants trained on
data containing more negatives (i.e., < 50%) and positive biases
in cases containing more positives (i.e., >50%). The CC trained
at 50% behaves as an unbiased estimator of the positive class
prevalence.
The function _qp.plot.binary_bias_bins_ allows the user to
generate box plots broken down by bins of true test prevalence.
To this aim, an argument _nbins_ is passed which indicates
how many isometric subintervals to take. For example
the following plot is produced for _nbins=3_:
![bias plot on IMDb](./wiki_examples/selected_plots/bin_bias_bin_cc.png)
Interestingly enough, the seemingly unbiased estimator (CC at 50%) happens to display
a positive bias (or a tendency to overestimate) in cases of low prevalence
(i.e., when the true prevalence of the positive class is below 33%),
and a negative bias (or a tendency to underestimate) in cases of high prevalence
(i.e., when the true prevalence is beyond 67%).
Out of curiosity, the diagonal plot for this experiment looks like:
![diag plot on IMDb](./wiki_examples/selected_plots/bin_diag_cc.png)
showing pretty clearly the dependency of CC on the prior probabilities
of the labeled set it was trained on.
## Error by Drift
Above discussed plots are useful for analyzing and comparing
the performance of different quantification methods, but are
limited to the binary case. The "error by drift" is a plot
that shows the error in predictions as a function of the
(prior probability) drift between each test sample and the
training set. Interestingly, the error and drift can both be measured
in terms of any evaluation measure for quantification (like the
ones available in _qp.error_) and can thus be computed
irrespectively of the number of classes.
The following shows how to generate the plot for the 4 CC variants,
using 10 bins for the drift
and _absolute error_ as the measure of the error (the
drift in the x-axis is always computed in terms of _absolute error_ since
other errors are harder to interpret):
```python
qp.plot.error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs,
error_name='ae', n_bins=10, savepath='./plots/err_drift.png')
```
![diag plot on IMDb](./wiki_examples/selected_plots/err_drift.png)
Note that all methods work reasonably well in cases of low prevalence
drift (i.e., any CC-variant is a good quantifier whenever the IID
assumption is approximately preserved). The higher the drift, the worse
those quantifiers tend to perform, although it is clear that PACC
yields the lowest error for the most difficult cases.
Remember that any plot can be generated _across many datasets_, and
that this would probably result in a more solid comparison.
In those cases, however, it is likely that the variances of each
method get higher, to the detriment of the visualization.
We recommend to set _show_std=False_ in those cases
in order to hide the color bands.

View File

@ -1,87 +1,36 @@
.. QuaPy documentation master file, created by
sphinx-quickstart on Tue Nov 9 11:31:32 2021.
.. QuaPy: A Python-based open-source framework for quantification documentation master file, created by
sphinx-quickstart on Wed Feb 7 16:26:46 2024.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
Welcome to QuaPy's documentation!
=================================
==========================================================================================
QuaPy is an open source framework for Quantification (a.k.a. Supervised Prevalence Estimation)
written in Python.
QuaPy is a Python-based open-source framework for quantification.
Introduction
This document contains the API of the modules included in QuaPy.
Installation
------------
QuaPy roots on the concept of data sample, and provides implementations of most important concepts
in quantification literature, such as the most important quantification baselines, many advanced
quantification methods, quantification-oriented model selection, many evaluation measures and protocols
used for evaluating quantification methods.
QuaPy also integrates commonly used datasets and offers visualization tools for facilitating the analysis and
interpretation of results.
`pip install quapy`
A quick example:
****************
GitHub
------------
The following script fetchs a Twitter dataset, trains and evaluates an
`Adjusted Classify & Count` model in terms of the `Mean Absolute Error` (MAE)
between the class prevalences estimated for the test set and the true prevalences
of the test set.
QuaPy is hosted in GitHub at `https://github.com/HLT-ISTI/QuaPy <https://github.com/HLT-ISTI/QuaPy>`_
::
import quapy as qp
from sklearn.linear_model import LogisticRegression
dataset = qp.datasets.fetch_twitter('semeval16')
# create an "Adjusted Classify & Count" quantifier
model = qp.method.aggregative.ACC(LogisticRegression())
model.fit(dataset.training)
estim_prevalences = model.quantify(dataset.test.instances)
true_prevalences = dataset.test.prevalence()
error = qp.error.mae(true_prevalences, estim_prevalences)
print(f'Mean Absolute Error (MAE)={error:.3f}')
Quantification is useful in scenarios of prior probability shift. In other
words, we would not be interested in estimating the class prevalences of the test set if
we could assume the IID assumption to hold, as this prevalence would simply coincide with the
class prevalence of the training set. For this reason, any Quantification model
should be tested across samples characterized by different class prevalences.
QuaPy implements sampling procedures and evaluation protocols that automates this endeavour.
See the :doc:`Evaluation` for detailed examples.
Features
********
* Implementation of most popular quantification methods (Classify-&-Count variants, Expectation-Maximization, SVM-based variants for quantification, HDy, QuaNet, and Ensembles).
* Versatile functionality for performing evaluation based on artificial sampling protocols.
* Implementation of most commonly used evaluation metrics (e.g., MAE, MRAE, MSE, NKLD, etc.).
* Popular datasets for Quantification (textual and numeric) available, including:
* 32 UCI Machine Learning datasets.
* 11 Twitter Sentiment datasets.
* 3 Reviews Sentiment datasets.
* 4 tasks from LeQua competition (_new in v0.1.7!_)
* Native supports for binary and single-label scenarios of quantification.
* Model selection functionality targeting quantification-oriented losses.
* Visualization tools for analysing results.
.. toctree::
:maxdepth: 2
:caption: Contents:
Installation
Datasets
Evaluation
Protocols
Methods
Model-Selection
Plotting
API Developers documentation<modules>
Contents
--------
.. toctree::
modules
Indices and tables

View File

@ -1,38 +1,35 @@
:tocdepth: 2
quapy.classification package
============================
Submodules
----------
quapy.classification.calibration
--------------------------------
quapy.classification.calibration module
---------------------------------------
.. versionadded:: 0.1.7
.. automodule:: quapy.classification.calibration
:members:
:undoc-members:
:show-inheritance:
quapy.classification.methods
----------------------------
quapy.classification.methods module
-----------------------------------
.. automodule:: quapy.classification.methods
:members:
:undoc-members:
:show-inheritance:
quapy.classification.neural
---------------------------
quapy.classification.neural module
----------------------------------
.. automodule:: quapy.classification.neural
:members:
:undoc-members:
:show-inheritance:
quapy.classification.svmperf
----------------------------
quapy.classification.svmperf module
-----------------------------------
.. automodule:: quapy.classification.svmperf
:members:

View File

@ -1,37 +1,36 @@
:tocdepth: 2
quapy.data package
==================
Submodules
----------
quapy.data.base
---------------
quapy.data.base module
----------------------
.. automodule:: quapy.data.base
:members:
:undoc-members:
:show-inheritance:
quapy.data.datasets
-------------------
quapy.data.datasets module
--------------------------
.. automodule:: quapy.data.datasets
:members:
:undoc-members:
:show-inheritance:
quapy.data.preprocessing
------------------------
quapy.data.preprocessing module
-------------------------------
.. automodule:: quapy.data.preprocessing
:members:
:undoc-members:
:show-inheritance:
quapy.data.reader
-----------------
quapy.data.reader module
------------------------
.. automodule:: quapy.data.reader
:members:

View File

@ -1,45 +1,51 @@
:tocdepth: 2
quapy.method package
====================
Submodules
----------
quapy.method.aggregative
------------------------
quapy.method.aggregative module
-------------------------------
.. automodule:: quapy.method.aggregative
:members:
:undoc-members:
:show-inheritance:
quapy.method.base
-----------------
.. automodule:: quapy.method._kdey
:members:
:undoc-members:
:show-inheritance:
.. automodule:: quapy.method._neural
:members:
:undoc-members:
:show-inheritance:
.. automodule:: quapy.method._threshold_optim
:members:
:undoc-members:
:show-inheritance:
quapy.method.base module
------------------------
.. automodule:: quapy.method.base
:members:
:undoc-members:
:show-inheritance:
quapy.method.meta
-----------------
quapy.method.meta module
------------------------
.. automodule:: quapy.method.meta
:members:
:undoc-members:
:show-inheritance:
quapy.method.neural
-------------------
.. automodule:: quapy.method.neural
:members:
:undoc-members:
:show-inheritance:
quapy.method.non\_aggregative
-----------------------------
quapy.method.non\_aggregative module
------------------------------------
.. automodule:: quapy.method.non_aggregative
:members:

View File

@ -1,79 +1,76 @@
:tocdepth: 2
quapy package
=============
Subpackages
-----------
.. toctree::
:maxdepth: 4
quapy.classification
quapy.data
quapy.method
Submodules
----------
quapy.error
-----------
quapy.error module
------------------
.. automodule:: quapy.error
:members:
:undoc-members:
:show-inheritance:
quapy.evaluation
----------------
quapy.evaluation module
-----------------------
.. automodule:: quapy.evaluation
:members:
:undoc-members:
:show-inheritance:
quapy.protocol
--------------
.. versionadded:: 0.1.7
.. automodule:: quapy.protocol
:members:
:undoc-members:
:show-inheritance:
quapy.functional
----------------
quapy.functional module
-----------------------
.. automodule:: quapy.functional
:members:
:undoc-members:
:show-inheritance:
quapy.model\_selection
----------------------
quapy.model\_selection module
-----------------------------
.. automodule:: quapy.model_selection
:members:
:undoc-members:
:show-inheritance:
quapy.plot
----------
quapy.plot module
-----------------
.. automodule:: quapy.plot
:members:
:undoc-members:
:show-inheritance:
quapy.util
----------
quapy.protocol module
---------------------
.. automodule:: quapy.protocol
:members:
:undoc-members:
:show-inheritance:
quapy.util module
-----------------
.. automodule:: quapy.util
:members:
:undoc-members:
:show-inheritance:
Subpackages
-----------
.. toctree::
:maxdepth: 3
quapy.classification
quapy.data
quapy.method
Module contents
---------------
@ -81,4 +78,3 @@ Module contents
:members:
:undoc-members:
:show-inheritance:

Binary file not shown.

Before

Width:  |  Height:  |  Size: 78 B

View File

@ -4,7 +4,7 @@
*
* Sphinx stylesheet -- basic theme.
*
* :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS.
* :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS.
* :license: BSD, see LICENSE for details.
*
*/
@ -55,7 +55,7 @@ div.sphinxsidebarwrapper {
div.sphinxsidebar {
float: left;
width: 210px;
width: 230px;
margin-left: -100%;
font-size: 90%;
word-wrap: break-word;
@ -237,6 +237,10 @@ a.headerlink {
visibility: hidden;
}
a:visited {
color: #551A8B;
}
h1:hover > a.headerlink,
h2:hover > a.headerlink,
h3:hover > a.headerlink,
@ -324,6 +328,7 @@ aside.sidebar {
p.sidebar-title {
font-weight: bold;
}
nav.contents,
aside.topic,
div.admonition, div.topic, blockquote {
@ -331,6 +336,7 @@ div.admonition, div.topic, blockquote {
}
/* -- topics ---------------------------------------------------------------- */
nav.contents,
aside.topic,
div.topic {
@ -606,6 +612,7 @@ ol.simple p,
ul.simple p {
margin-bottom: 0;
}
aside.footnote > span,
div.citation > span {
float: left;
@ -667,6 +674,16 @@ dd {
margin-left: 30px;
}
.sig dd {
margin-top: 0px;
margin-bottom: 0px;
}
.sig dl {
margin-top: 0px;
margin-bottom: 0px;
}
dl > dd:last-child,
dl > dd:last-child > :last-child {
margin-bottom: 0;
@ -735,6 +752,14 @@ abbr, acronym {
cursor: help;
}
.translated {
background-color: rgba(207, 255, 207, 0.2)
}
.untranslated {
background-color: rgba(255, 207, 207, 0.2)
}
/* -- code displays --------------------------------------------------------- */
pre {

View File

@ -1,508 +0,0 @@
/*
* bizstyle.css_t
* ~~~~~~~~~~~~~~
*
* Sphinx stylesheet -- business style theme.
*
* :copyright: Copyright 2011-2014 by Sphinx team, see AUTHORS.
* :license: BSD, see LICENSE for details.
*
*/
@import url("basic.css");
/* -- page layout ----------------------------------------------------------- */
body {
font-family: 'Lucida Grande', 'Lucida Sans Unicode', 'Geneva',
'Verdana', sans-serif;
font-size: 14px;
letter-spacing: -0.01em;
line-height: 150%;
text-align: center;
background-color: white;
background-image: url(background_b01.png);
color: black;
padding: 0;
border-right: 1px solid #336699;
border-left: 1px solid #336699;
margin: 0px 40px 0px 40px;
}
div.document {
background-color: white;
text-align: left;
background-repeat: repeat-x;
-moz-box-shadow: 2px 2px 5px #000;
-webkit-box-shadow: 2px 2px 5px #000;
}
div.documentwrapper {
float: left;
width: 100%;
}
div.bodywrapper {
margin: 0 0 0 240px;
border-left: 1px solid #ccc;
}
div.body {
margin: 0;
padding: 0.5em 20px 20px 20px;
}
div.bodywrapper {
margin: 0 0 0 calc(210px + 30px);
}
div.related {
font-size: 1em;
-moz-box-shadow: 2px 2px 5px #000;
-webkit-box-shadow: 2px 2px 5px #000;
}
div.related ul {
background-color: #336699;
height: 100%;
overflow: hidden;
border-top: 1px solid #ddd;
border-bottom: 1px solid #ddd;
}
div.related ul li {
color: white;
margin: 0;
padding: 0;
height: 2em;
float: left;
}
div.related ul li.right {
float: right;
margin-right: 5px;
}
div.related ul li a {
margin: 0;
padding: 0 5px 0 5px;
line-height: 1.75em;
color: #fff;
}
div.related ul li a:hover {
color: #fff;
text-decoration: underline;
}
div.sphinxsidebarwrapper {
padding: 0;
}
div.sphinxsidebar {
padding: 0.5em 12px 12px 12px;
width: 210px;
font-size: 1em;
text-align: left;
}
div.sphinxsidebar h3, div.sphinxsidebar h4 {
margin: 1em 0 0.5em 0;
font-size: 1em;
padding: 0.1em 0 0.1em 0.5em;
color: white;
border: 1px solid #336699;
background-color: #336699;
}
div.sphinxsidebar h3 a {
color: white;
}
div.sphinxsidebar ul {
padding-left: 1.5em;
margin-top: 7px;
padding: 0;
line-height: 130%;
}
div.sphinxsidebar ul ul {
margin-left: 20px;
}
div.sphinxsidebar input {
border: 1px solid #336699;
}
div.footer {
background-color: white;
color: #336699;
padding: 3px 8px 3px 0;
clear: both;
font-size: 0.8em;
text-align: right;
border-bottom: 1px solid #336699;
-moz-box-shadow: 2px 2px 5px #000;
-webkit-box-shadow: 2px 2px 5px #000;
}
div.footer a {
color: #336699;
text-decoration: underline;
}
/* -- body styles ----------------------------------------------------------- */
p {
margin: 0.8em 0 0.5em 0;
}
a {
color: #336699;
text-decoration: none;
}
a:hover {
color: #336699;
text-decoration: underline;
}
div.body a {
text-decoration: underline;
}
h1, h2, h3 {
color: #336699;
}
h1 {
margin: 0;
padding: 0.7em 0 0.3em 0;
font-size: 1.5em;
}
h2 {
margin: 1.3em 0 0.2em 0;
font-size: 1.35em;
padding-bottom: .5em;
border-bottom: 1px solid #336699;
}
h3 {
margin: 1em 0 -0.3em 0;
font-size: 1.2em;
padding-bottom: .3em;
border-bottom: 1px solid #CCCCCC;
}
div.body h1 a, div.body h2 a, div.body h3 a,
div.body h4 a, div.body h5 a, div.body h6 a {
color: black!important;
}
h1 a.anchor, h2 a.anchor, h3 a.anchor,
h4 a.anchor, h5 a.anchor, h6 a.anchor {
display: none;
margin: 0 0 0 0.3em;
padding: 0 0.2em 0 0.2em;
color: #aaa!important;
}
h1:hover a.anchor, h2:hover a.anchor, h3:hover a.anchor, h4:hover a.anchor,
h5:hover a.anchor, h6:hover a.anchor {
display: inline;
}
h1 a.anchor:hover, h2 a.anchor:hover, h3 a.anchor:hover, h4 a.anchor:hover,
h5 a.anchor:hover, h6 a.anchor:hover {
color: #777;
background-color: #eee;
}
a.headerlink {
color: #c60f0f!important;
font-size: 1em;
margin-left: 6px;
padding: 0 4px 0 4px;
text-decoration: none!important;
}
a.headerlink:hover {
background-color: #ccc;
color: white!important;
}
cite, code, tt {
font-family: 'Consolas', 'Deja Vu Sans Mono',
'Bitstream Vera Sans Mono', monospace;
font-size: 0.95em;
letter-spacing: 0.01em;
}
code {
background-color: #F2F2F2;
border-bottom: 1px solid #ddd;
color: #333;
}
code.descname, code.descclassname, code.xref {
border: 0;
}
hr {
border: 1px solid #abc;
margin: 2em;
}
a code {
border: 0;
color: #CA7900;
}
a code:hover {
color: #2491CF;
}
pre {
background-color: transparent !important;
font-family: 'Consolas', 'Deja Vu Sans Mono',
'Bitstream Vera Sans Mono', monospace;
font-size: 0.95em;
letter-spacing: 0.015em;
line-height: 120%;
padding: 0.5em;
border-right: 5px solid #ccc;
border-left: 5px solid #ccc;
}
pre a {
color: inherit;
text-decoration: underline;
}
td.linenos pre {
padding: 0.5em 0;
}
div.quotebar {
background-color: #f8f8f8;
max-width: 250px;
float: right;
padding: 2px 7px;
border: 1px solid #ccc;
}
nav.contents,
aside.topic,
div.topic {
background-color: #f8f8f8;
}
table {
border-collapse: collapse;
margin: 0 -0.5em 0 -0.5em;
}
table td, table th {
padding: 0.2em 0.5em 0.2em 0.5em;
}
div.admonition {
font-size: 0.9em;
margin: 1em 0 1em 0;
border: 3px solid #cccccc;
background-color: #f7f7f7;
padding: 0;
}
div.admonition p {
margin: 0.5em 1em 0.5em 1em;
padding: 0;
}
div.admonition li p {
margin-left: 0;
}
div.admonition pre, div.warning pre {
margin: 0;
}
div.highlight {
margin: 0.4em 1em;
}
div.admonition p.admonition-title {
margin: 0;
padding: 0.1em 0 0.1em 0.5em;
color: white;
border-bottom: 3px solid #cccccc;
font-weight: bold;
background-color: #165e83;
}
div.danger { border: 3px solid #f0908d; background-color: #f0cfa0; }
div.error { border: 3px solid #f0908d; background-color: #ede4cd; }
div.warning { border: 3px solid #f8b862; background-color: #f0cfa0; }
div.caution { border: 3px solid #f8b862; background-color: #ede4cd; }
div.attention { border: 3px solid #f8b862; background-color: #f3f3f3; }
div.important { border: 3px solid #f0cfa0; background-color: #ede4cd; }
div.note { border: 3px solid #f0cfa0; background-color: #f3f3f3; }
div.hint { border: 3px solid #bed2c3; background-color: #f3f3f3; }
div.tip { border: 3px solid #bed2c3; background-color: #f3f3f3; }
div.danger p.admonition-title, div.error p.admonition-title {
background-color: #b7282e;
border-bottom: 3px solid #f0908d;
}
div.caution p.admonition-title,
div.warning p.admonition-title,
div.attention p.admonition-title {
background-color: #f19072;
border-bottom: 3px solid #f8b862;
}
div.note p.admonition-title, div.important p.admonition-title {
background-color: #f8b862;
border-bottom: 3px solid #f0cfa0;
}
div.hint p.admonition-title, div.tip p.admonition-title {
background-color: #7ebea5;
border-bottom: 3px solid #bed2c3;
}
div.admonition ul, div.admonition ol,
div.warning ul, div.warning ol {
margin: 0.1em 0.5em 0.5em 3em;
padding: 0;
}
div.versioninfo {
margin: 1em 0 0 0;
border: 1px solid #ccc;
background-color: #DDEAF0;
padding: 8px;
line-height: 1.3em;
font-size: 0.9em;
}
.viewcode-back {
font-family: 'Lucida Grande', 'Lucida Sans Unicode', 'Geneva',
'Verdana', sans-serif;
}
div.viewcode-block:target {
background-color: #f4debf;
border-top: 1px solid #ac9;
border-bottom: 1px solid #ac9;
}
p.versionchanged span.versionmodified {
font-size: 0.9em;
margin-right: 0.2em;
padding: 0.1em;
background-color: #DCE6A0;
}
dl.field-list > dt {
color: white;
background-color: #82A0BE;
}
dl.field-list > dd {
background-color: #f7f7f7;
}
/* -- table styles ---------------------------------------------------------- */
table.docutils {
margin: 1em 0;
padding: 0;
border: 1px solid white;
background-color: #f7f7f7;
}
table.docutils td, table.docutils th {
padding: 1px 8px 1px 5px;
border-top: 0;
border-left: 0;
border-right: 1px solid white;
border-bottom: 1px solid white;
}
table.docutils td p {
margin-top: 0;
margin-bottom: 0.3em;
}
table.field-list td, table.field-list th {
border: 0 !important;
word-break: break-word;
}
table.footnote td, table.footnote th {
border: 0 !important;
}
th {
color: white;
text-align: left;
padding-right: 5px;
background-color: #82A0BE;
}
div.literal-block-wrapper div.code-block-caption {
background-color: #EEE;
border-style: solid;
border-color: #CCC;
border-width: 1px 5px;
}
/* WIDE DESKTOP STYLE */
@media only screen and (min-width: 1176px) {
body {
margin: 0 40px 0 40px;
}
}
/* TABLET STYLE */
@media only screen and (min-width: 768px) and (max-width: 991px) {
body {
margin: 0 40px 0 40px;
}
}
/* MOBILE LAYOUT (PORTRAIT/320px) */
@media only screen and (max-width: 767px) {
body {
margin: 0;
}
div.bodywrapper {
margin: 0;
width: 100%;
border: none;
}
div.sphinxsidebar {
display: none;
}
}
/* MOBILE LAYOUT (LANDSCAPE/480px) */
@media only screen and (min-width: 480px) and (max-width: 767px) {
body {
margin: 0 20px 0 20px;
}
}
/* RETINA OVERRIDES */
@media
only screen and (-webkit-min-device-pixel-ratio: 2),
only screen and (min-device-pixel-ratio: 2) {
}
/* -- end ------------------------------------------------------------------- */

View File

@ -1,30 +0,0 @@
//
// bizstyle.js
// ~~~~~~~~~~~
//
// Sphinx javascript -- for bizstyle theme.
//
// This theme was created by referring to 'sphinxdoc'
//
// :copyright: Copyright 2012-2014 by Sphinx team, see AUTHORS.
// :license: BSD, see LICENSE for details.
//
const initialiseBizStyle = () => {
if (navigator.userAgent.indexOf("iPhone") > 0 || navigator.userAgent.indexOf("Android") > 0) {
document.querySelector("li.nav-item-0 a").innerText = "Top"
}
const truncator = item => {if (item.textContent.length > 20) {
item.title = item.innerText
item.innerText = item.innerText.substr(0, 17) + "..."
}
}
document.querySelectorAll("div.related:first ul li:not(.right) a").slice(1).forEach(truncator);
document.querySelectorAll("div.related:last ul li:not(.right) a").slice(1).forEach(truncator);
}
window.addEventListener("resize",
() => (document.querySelector("li.nav-item-0 a").innerText = (window.innerWidth <= 776) ? "Top" : "QuaPy 0.1.7 documentation")
)
if (document.readyState !== "loading") initialiseBizStyle()
else document.addEventListener("DOMContentLoaded", initialiseBizStyle)

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@ -4,7 +4,7 @@
*
* Base JavaScript utilities for all Sphinx HTML documentation.
*
* :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS.
* :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS.
* :license: BSD, see LICENSE for details.
*
*/

View File

@ -1,6 +1,5 @@
var DOCUMENTATION_OPTIONS = {
URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'),
VERSION: '0.1.7',
const DOCUMENTATION_OPTIONS = {
VERSION: '0.1.8',
LANGUAGE: 'en',
COLLAPSE_INDEX: false,
BUILDER: 'html',

View File

@ -5,7 +5,7 @@
* This script contains the language-specific data used by searchtools.js,
* namely the list of stopwords, stemmer, scorer and splitter.
*
* :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS.
* :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS.
* :license: BSD, see LICENSE for details.
*
*/

View File

@ -1,74 +1,74 @@
pre { line-height: 125%; }
td.linenos .normal { color: #666666; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: #666666; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight { background: #f0f0f0; }
.highlight .c { color: #60a0b0; font-style: italic } /* Comment */
.highlight { background: #f8f8f8; }
.highlight .c { color: #3D7B7B; font-style: italic } /* Comment */
.highlight .err { border: 1px solid #FF0000 } /* Error */
.highlight .k { color: #007020; font-weight: bold } /* Keyword */
.highlight .k { color: #008000; font-weight: bold } /* Keyword */
.highlight .o { color: #666666 } /* Operator */
.highlight .ch { color: #60a0b0; font-style: italic } /* Comment.Hashbang */
.highlight .cm { color: #60a0b0; font-style: italic } /* Comment.Multiline */
.highlight .cp { color: #007020 } /* Comment.Preproc */
.highlight .cpf { color: #60a0b0; font-style: italic } /* Comment.PreprocFile */
.highlight .c1 { color: #60a0b0; font-style: italic } /* Comment.Single */
.highlight .cs { color: #60a0b0; background-color: #fff0f0 } /* Comment.Special */
.highlight .ch { color: #3D7B7B; font-style: italic } /* Comment.Hashbang */
.highlight .cm { color: #3D7B7B; font-style: italic } /* Comment.Multiline */
.highlight .cp { color: #9C6500 } /* Comment.Preproc */
.highlight .cpf { color: #3D7B7B; font-style: italic } /* Comment.PreprocFile */
.highlight .c1 { color: #3D7B7B; font-style: italic } /* Comment.Single */
.highlight .cs { color: #3D7B7B; font-style: italic } /* Comment.Special */
.highlight .gd { color: #A00000 } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #FF0000 } /* Generic.Error */
.highlight .gr { color: #E40000 } /* Generic.Error */
.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
.highlight .gi { color: #00A000 } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #c65d09; font-weight: bold } /* Generic.Prompt */
.highlight .gi { color: #008400 } /* Generic.Inserted */
.highlight .go { color: #717171 } /* Generic.Output */
.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
.highlight .gt { color: #0044DD } /* Generic.Traceback */
.highlight .kc { color: #007020; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #007020; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #007020; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #007020 } /* Keyword.Pseudo */
.highlight .kr { color: #007020; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #902000 } /* Keyword.Type */
.highlight .m { color: #40a070 } /* Literal.Number */
.highlight .s { color: #4070a0 } /* Literal.String */
.highlight .na { color: #4070a0 } /* Name.Attribute */
.highlight .nb { color: #007020 } /* Name.Builtin */
.highlight .nc { color: #0e84b5; font-weight: bold } /* Name.Class */
.highlight .no { color: #60add5 } /* Name.Constant */
.highlight .nd { color: #555555; font-weight: bold } /* Name.Decorator */
.highlight .ni { color: #d55537; font-weight: bold } /* Name.Entity */
.highlight .ne { color: #007020 } /* Name.Exception */
.highlight .nf { color: #06287e } /* Name.Function */
.highlight .nl { color: #002070; font-weight: bold } /* Name.Label */
.highlight .nn { color: #0e84b5; font-weight: bold } /* Name.Namespace */
.highlight .nt { color: #062873; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #bb60d5 } /* Name.Variable */
.highlight .ow { color: #007020; font-weight: bold } /* Operator.Word */
.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008000 } /* Keyword.Pseudo */
.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #B00040 } /* Keyword.Type */
.highlight .m { color: #666666 } /* Literal.Number */
.highlight .s { color: #BA2121 } /* Literal.String */
.highlight .na { color: #687822 } /* Name.Attribute */
.highlight .nb { color: #008000 } /* Name.Builtin */
.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */
.highlight .no { color: #880000 } /* Name.Constant */
.highlight .nd { color: #AA22FF } /* Name.Decorator */
.highlight .ni { color: #717171; font-weight: bold } /* Name.Entity */
.highlight .ne { color: #CB3F38; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0000FF } /* Name.Function */
.highlight .nl { color: #767600 } /* Name.Label */
.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #19177C } /* Name.Variable */
.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #40a070 } /* Literal.Number.Bin */
.highlight .mf { color: #40a070 } /* Literal.Number.Float */
.highlight .mh { color: #40a070 } /* Literal.Number.Hex */
.highlight .mi { color: #40a070 } /* Literal.Number.Integer */
.highlight .mo { color: #40a070 } /* Literal.Number.Oct */
.highlight .sa { color: #4070a0 } /* Literal.String.Affix */
.highlight .sb { color: #4070a0 } /* Literal.String.Backtick */
.highlight .sc { color: #4070a0 } /* Literal.String.Char */
.highlight .dl { color: #4070a0 } /* Literal.String.Delimiter */
.highlight .sd { color: #4070a0; font-style: italic } /* Literal.String.Doc */
.highlight .s2 { color: #4070a0 } /* Literal.String.Double */
.highlight .se { color: #4070a0; font-weight: bold } /* Literal.String.Escape */
.highlight .sh { color: #4070a0 } /* Literal.String.Heredoc */
.highlight .si { color: #70a0d0; font-style: italic } /* Literal.String.Interpol */
.highlight .sx { color: #c65d09 } /* Literal.String.Other */
.highlight .sr { color: #235388 } /* Literal.String.Regex */
.highlight .s1 { color: #4070a0 } /* Literal.String.Single */
.highlight .ss { color: #517918 } /* Literal.String.Symbol */
.highlight .bp { color: #007020 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #06287e } /* Name.Function.Magic */
.highlight .vc { color: #bb60d5 } /* Name.Variable.Class */
.highlight .vg { color: #bb60d5 } /* Name.Variable.Global */
.highlight .vi { color: #bb60d5 } /* Name.Variable.Instance */
.highlight .vm { color: #bb60d5 } /* Name.Variable.Magic */
.highlight .il { color: #40a070 } /* Literal.Number.Integer.Long */
.highlight .mb { color: #666666 } /* Literal.Number.Bin */
.highlight .mf { color: #666666 } /* Literal.Number.Float */
.highlight .mh { color: #666666 } /* Literal.Number.Hex */
.highlight .mi { color: #666666 } /* Literal.Number.Integer */
.highlight .mo { color: #666666 } /* Literal.Number.Oct */
.highlight .sa { color: #BA2121 } /* Literal.String.Affix */
.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */
.highlight .sc { color: #BA2121 } /* Literal.String.Char */
.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */
.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
.highlight .s2 { color: #BA2121 } /* Literal.String.Double */
.highlight .se { color: #AA5D1F; font-weight: bold } /* Literal.String.Escape */
.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */
.highlight .si { color: #A45A77; font-weight: bold } /* Literal.String.Interpol */
.highlight .sx { color: #008000 } /* Literal.String.Other */
.highlight .sr { color: #A45A77 } /* Literal.String.Regex */
.highlight .s1 { color: #BA2121 } /* Literal.String.Single */
.highlight .ss { color: #19177C } /* Literal.String.Symbol */
.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0000FF } /* Name.Function.Magic */
.highlight .vc { color: #19177C } /* Name.Variable.Class */
.highlight .vg { color: #19177C } /* Name.Variable.Global */
.highlight .vi { color: #19177C } /* Name.Variable.Instance */
.highlight .vm { color: #19177C } /* Name.Variable.Magic */
.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */

View File

@ -4,7 +4,7 @@
*
* Sphinx JavaScript utilities for the full-text search.
*
* :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS.
* :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS.
* :license: BSD, see LICENSE for details.
*
*/
@ -57,12 +57,12 @@ const _removeChildren = (element) => {
const _escapeRegExp = (string) =>
string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string
const _displayItem = (item, searchTerms) => {
const _displayItem = (item, searchTerms, highlightTerms) => {
const docBuilder = DOCUMENTATION_OPTIONS.BUILDER;
const docUrlRoot = DOCUMENTATION_OPTIONS.URL_ROOT;
const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX;
const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX;
const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY;
const contentRoot = document.documentElement.dataset.content_root;
const [docName, title, anchor, descr, score, _filename] = item;
@ -75,20 +75,24 @@ const _displayItem = (item, searchTerms) => {
if (dirname.match(/\/index\/$/))
dirname = dirname.substring(0, dirname.length - 6);
else if (dirname === "index/") dirname = "";
requestUrl = docUrlRoot + dirname;
requestUrl = contentRoot + dirname;
linkUrl = requestUrl;
} else {
// normal html builders
requestUrl = docUrlRoot + docName + docFileSuffix;
requestUrl = contentRoot + docName + docFileSuffix;
linkUrl = docName + docLinkSuffix;
}
let linkEl = listItem.appendChild(document.createElement("a"));
linkEl.href = linkUrl + anchor;
linkEl.dataset.score = score;
linkEl.innerHTML = title;
if (descr)
if (descr) {
listItem.appendChild(document.createElement("span")).innerHTML =
" (" + descr + ")";
// highlight search terms in the description
if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js
highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted"));
}
else if (showSearchSummary)
fetch(requestUrl)
.then((responseData) => responseData.text())
@ -97,6 +101,9 @@ const _displayItem = (item, searchTerms) => {
listItem.appendChild(
Search.makeSearchSummary(data, searchTerms)
);
// highlight search terms in the summary
if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js
highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted"));
});
Search.output.appendChild(listItem);
};
@ -115,14 +122,15 @@ const _finishSearch = (resultCount) => {
const _displayNextItem = (
results,
resultCount,
searchTerms
searchTerms,
highlightTerms,
) => {
// results left, load the summary and display it
// this is intended to be dynamic (don't sub resultsCount)
if (results.length) {
_displayItem(results.pop(), searchTerms);
_displayItem(results.pop(), searchTerms, highlightTerms);
setTimeout(
() => _displayNextItem(results, resultCount, searchTerms),
() => _displayNextItem(results, resultCount, searchTerms, highlightTerms),
5
);
}
@ -156,7 +164,7 @@ const Search = {
const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html');
htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() });
const docContent = htmlElement.querySelector('[role="main"]');
if (docContent !== undefined) return docContent.textContent;
if (docContent) return docContent.textContent;
console.warn(
"Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template."
);
@ -280,9 +288,9 @@ const Search = {
let results = [];
_removeChildren(document.getElementById("search-progress"));
const queryLower = query.toLowerCase();
const queryLower = query.toLowerCase().trim();
for (const [title, foundTitles] of Object.entries(allTitles)) {
if (title.toLowerCase().includes(queryLower) && (queryLower.length >= title.length/2)) {
if (title.toLowerCase().trim().includes(queryLower) && (queryLower.length >= title.length/2)) {
for (const [file, id] of foundTitles) {
let score = Math.round(100 * queryLower.length / title.length)
results.push([
@ -360,7 +368,7 @@ const Search = {
// console.info("search results:", Search.lastresults);
// print the results
_displayNextItem(results, results.length, searchTerms);
_displayNextItem(results, results.length, searchTerms, highlightTerms);
},
/**

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

View File

@ -1,47 +1,72 @@
<!doctype html>
<html lang="en">
<head>
<!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Index &#8212; QuaPy 0.1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
<title>Index &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.8 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=92fd9be5" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=19f00094" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/bizstyle.js"></script>
<!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script>
<![endif]-->
<script src="_static/jquery.js?v=5d32c60e"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="_static/documentation_options.js?v=22607128"></script>
<script src="_static/doctools.js?v=9a2dae69"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="#" />
<link rel="search" title="Search" href="search.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="#" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Index</a></li>
</ul>
</div>
</head>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="index.html" class="icon icon-home">
QuaPy: A Python-based open-source framework for quantification
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<ul>
<li class="toctree-l1"><a class="reference internal" href="modules.html">quapy</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">QuaPy: A Python-based open-source framework for quantification</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item active">Index</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1 id="index">Index</h1>
@ -97,14 +122,24 @@
</li>
<li><a href="quapy.html#quapy.error.ae">ae() (in module quapy.error)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.ACC.aggregate">aggregate() (quapy.method.aggregative.ACC method)</a>
<li><a href="quapy.method.html#quapy.method._kdey.KDEyCS.aggregate">aggregate() (quapy.method._kdey.KDEyCS method)</a>
<ul>
<li><a href="quapy.method.html#quapy.method._kdey.KDEyHD.aggregate">(quapy.method._kdey.KDEyHD method)</a>
</li>
<li><a href="quapy.method.html#quapy.method._kdey.KDEyML.aggregate">(quapy.method._kdey.KDEyML method)</a>
</li>
<li><a href="quapy.method.html#quapy.method._threshold_optim.MS.aggregate">(quapy.method._threshold_optim.MS method)</a>
</li>
<li><a href="quapy.method.html#quapy.method._threshold_optim.ThresholdOptimization.aggregate">(quapy.method._threshold_optim.ThresholdOptimization method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.ACC.aggregate">(quapy.method.aggregative.ACC method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.aggregate">(quapy.method.aggregative.AggregativeQuantifier method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.CC.aggregate">(quapy.method.aggregative.CC method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.DistributionMatching.aggregate">(quapy.method.aggregative.DistributionMatching method)</a>
<li><a href="quapy.method.html#quapy.method.aggregative.DMy.aggregate">(quapy.method.aggregative.DMy method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.DyS.aggregate">(quapy.method.aggregative.DyS method)</a>
</li>
@ -119,21 +154,61 @@
<li><a href="quapy.method.html#quapy.method.aggregative.PCC.aggregate">(quapy.method.aggregative.PCC method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.SMM.aggregate">(quapy.method.aggregative.SMM method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.ThresholdOptimization.aggregate">(quapy.method.aggregative.ThresholdOptimization method)</a>
</li>
</ul></li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method._threshold_optim.ThresholdOptimization.aggregate_with_threshold">aggregate_with_threshold() (quapy.method._threshold_optim.ThresholdOptimization method)</a>
</li>
<li><a href="quapy.method.html#quapy.method._kdey.KDEyCS.aggregation_fit">aggregation_fit() (quapy.method._kdey.KDEyCS method)</a>
<ul>
<li><a href="quapy.method.html#quapy.method._kdey.KDEyHD.aggregation_fit">(quapy.method._kdey.KDEyHD method)</a>
</li>
<li><a href="quapy.method.html#quapy.method._kdey.KDEyML.aggregation_fit">(quapy.method._kdey.KDEyML method)</a>
</li>
<li><a href="quapy.method.html#quapy.method._threshold_optim.MS.aggregation_fit">(quapy.method._threshold_optim.MS method)</a>
</li>
<li><a href="quapy.method.html#quapy.method._threshold_optim.ThresholdOptimization.aggregation_fit">(quapy.method._threshold_optim.ThresholdOptimization method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.ACC.aggregation_fit">(quapy.method.aggregative.ACC method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.aggregation_fit">(quapy.method.aggregative.AggregativeQuantifier method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.CC.aggregation_fit">(quapy.method.aggregative.CC method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.DMy.aggregation_fit">(quapy.method.aggregative.DMy method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.DyS.aggregation_fit">(quapy.method.aggregative.DyS method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.EMQ.aggregation_fit">(quapy.method.aggregative.EMQ method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.HDy.aggregation_fit">(quapy.method.aggregative.HDy method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.PACC.aggregation_fit">(quapy.method.aggregative.PACC method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.PCC.aggregation_fit">(quapy.method.aggregative.PCC method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.SMM.aggregation_fit">(quapy.method.aggregative.SMM method)</a>
</li>
</ul></li>
<li><a href="quapy.method.html#quapy.method.meta.Ensemble.aggregative">aggregative (quapy.method.meta.Ensemble property)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeProbabilisticQuantifier">AggregativeProbabilisticQuantifier (class in quapy.method.aggregative)</a>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeCrispQuantifier">AggregativeCrispQuantifier (class in quapy.method.aggregative)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeMedianEstimator">AggregativeMedianEstimator (class in quapy.method.aggregative)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier">AggregativeQuantifier (class in quapy.method.aggregative)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeSoftQuantifier">AggregativeSoftQuantifier (class in quapy.method.aggregative)</a>
</li>
<li><a href="quapy.html#quapy.protocol.APP">APP (class in quapy.protocol)</a>
</li>
<li><a href="quapy.html#quapy.functional.argmin_prevalence">argmin_prevalence() (in module quapy.functional)</a>
</li>
<li><a href="quapy.html#quapy.protocol.ArtificialPrevalenceProtocol">ArtificialPrevalenceProtocol (in module quapy.protocol)</a>
</li>
<li><a href="quapy.html#quapy.functional.as_binary_prevalence">as_binary_prevalence() (in module quapy.functional)</a>
</li>
<li><a href="quapy.classification.html#quapy.classification.neural.TorchDataset.asDataloader">asDataloader() (quapy.classification.neural.TorchDataset method)</a>
</li>
@ -143,6 +218,8 @@
<h2 id="B">B</h2>
<table style="width: 100%" class="indextable genindextable"><tr>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method._kdey.KDEBase.BANDWIDTH_METHOD">BANDWIDTH_METHOD (quapy.method._kdey.KDEBase attribute)</a>
</li>
<li><a href="quapy.method.html#quapy.method.base.BaseQuantifier">BaseQuantifier (class in quapy.method.base)</a>
</li>
<li><a href="quapy.classification.html#quapy.classification.calibration.BCTSCalibration">BCTSCalibration (class in quapy.classification.calibration)</a>
@ -164,6 +241,8 @@
<li><a href="quapy.html#quapy.plot.binary_bias_global">binary_bias_global() (in module quapy.plot)</a>
</li>
<li><a href="quapy.html#quapy.plot.binary_diagonal">binary_diagonal() (in module quapy.plot)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.BinaryAggregativeQuantifier">BinaryAggregativeQuantifier (class in quapy.method.aggregative)</a>
</li>
<li><a href="quapy.method.html#quapy.method.base.BinaryQuantifier">BinaryQuantifier (class in quapy.method.base)</a>
</li>
@ -183,47 +262,57 @@
<ul>
<li><a href="quapy.data.html#quapy.data.base.Dataset.classes_">(quapy.data.base.Dataset property)</a>
</li>
<li><a href="quapy.method.html#quapy.method._neural.QuaNetTrainer.classes_">(quapy.method._neural.QuaNetTrainer property)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.classes_">(quapy.method.aggregative.AggregativeQuantifier property)</a>
</li>
<li><a href="quapy.method.html#quapy.method.base.OneVsAllGeneric.classes_">(quapy.method.base.OneVsAllGeneric property)</a>
</li>
<li><a href="quapy.method.html#quapy.method.neural.QuaNetTrainer.classes_">(quapy.method.neural.QuaNetTrainer property)</a>
</li>
</ul></li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.classifier">classifier (quapy.method.aggregative.AggregativeQuantifier property)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.ACC.classify">classify() (quapy.method.aggregative.ACC method)</a>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.classifier_fit_predict">classifier_fit_predict() (quapy.method.aggregative.AggregativeQuantifier method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.classify">classify() (quapy.method.aggregative.AggregativeQuantifier method)</a>
<ul>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeProbabilisticQuantifier.classify">(quapy.method.aggregative.AggregativeProbabilisticQuantifier method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.classify">(quapy.method.aggregative.AggregativeQuantifier method)</a>
<li><a href="quapy.method.html#quapy.method.aggregative.EMQ.classify">(quapy.method.aggregative.EMQ method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.OneVsAllAggregative.classify">(quapy.method.aggregative.OneVsAllAggregative method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.PACC.classify">(quapy.method.aggregative.PACC method)</a>
</li>
</ul></li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method.aggregative.ClassifyAndCount">ClassifyAndCount (in module quapy.method.aggregative)</a>
</li>
<li><a href="quapy.method.html#quapy.method.neural.QuaNetTrainer.clean_checkpoint">clean_checkpoint() (quapy.method.neural.QuaNetTrainer method)</a>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method._neural.QuaNetTrainer.clean_checkpoint">clean_checkpoint() (quapy.method._neural.QuaNetTrainer method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.neural.QuaNetTrainer.clean_checkpoint_dir">clean_checkpoint_dir() (quapy.method.neural.QuaNetTrainer method)</a>
<li><a href="quapy.method.html#quapy.method._neural.QuaNetTrainer.clean_checkpoint_dir">clean_checkpoint_dir() (quapy.method._neural.QuaNetTrainer method)</a>
</li>
<li><a href="quapy.classification.html#quapy.classification.neural.CNNnet">CNNnet (class in quapy.classification.neural)</a>
</li>
<li><a href="quapy.html#quapy.protocol.AbstractStochasticSeededProtocol.collator">collator() (quapy.protocol.AbstractStochasticSeededProtocol method)</a>
</li>
<li><a href="quapy.method.html#quapy.method._threshold_optim.MAX.condition">condition() (quapy.method._threshold_optim.MAX method)</a>
<ul>
<li><a href="quapy.method.html#quapy.method._threshold_optim.MS.condition">(quapy.method._threshold_optim.MS method)</a>
</li>
<li><a href="quapy.method.html#quapy.method._threshold_optim.T50.condition">(quapy.method._threshold_optim.T50 method)</a>
</li>
<li><a href="quapy.method.html#quapy.method._threshold_optim.ThresholdOptimization.condition">(quapy.method._threshold_optim.ThresholdOptimization method)</a>
</li>
<li><a href="quapy.method.html#quapy.method._threshold_optim.X.condition">(quapy.method._threshold_optim.X method)</a>
</li>
</ul></li>
<li><a href="quapy.html#quapy.model_selection.ConfigStatus">ConfigStatus (class in quapy.model_selection)</a>
</li>
<li><a href="quapy.data.html#quapy.data.base.LabelledCollection.counts">counts() (quapy.data.base.LabelledCollection method)</a>
</li>
<li><a href="quapy.html#quapy.util.create_if_not_exist">create_if_not_exist() (in module quapy.util)</a>
</li>
<li><a href="quapy.html#quapy.util.create_parent_dir">create_parent_dir() (in module quapy.util)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.cross_generate_predictions">cross_generate_predictions() (in module quapy.method.aggregative)</a>
</li>
<li><a href="quapy.html#quapy.model_selection.cross_val_predict">cross_val_predict() (in module quapy.model_selection)</a>
</li>
@ -240,15 +329,27 @@
<li><a href="quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.device">device (quapy.classification.neural.NeuralClassifierTrainer property)</a>
<ul>
<li><a href="quapy.method.html#quapy.method.neural.QuaNetModule.device">(quapy.method.neural.QuaNetModule property)</a>
<li><a href="quapy.method.html#quapy.method._neural.QuaNetModule.device">(quapy.method._neural.QuaNetModule property)</a>
</li>
</ul></li>
<li><a href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.dimensions">dimensions() (quapy.classification.neural.TextClassifierNet method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.DistributionMatching">DistributionMatching (class in quapy.method.aggregative)</a>
<li><a href="quapy.method.html#quapy.method._threshold_optim.MS2.discard">discard() (quapy.method._threshold_optim.MS2 method)</a>
<ul>
<li><a href="quapy.method.html#quapy.method._threshold_optim.ThresholdOptimization.discard">(quapy.method._threshold_optim.ThresholdOptimization method)</a>
</li>
</ul></li>
<li><a href="quapy.method.html#quapy.method.non_aggregative.DistributionMatchingX">DistributionMatchingX (in module quapy.method.non_aggregative)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.DistributionMatchingY">DistributionMatchingY (in module quapy.method.aggregative)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method.non_aggregative.DMx">DMx (class in quapy.method.non_aggregative)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.DMy">DMy (class in quapy.method.aggregative)</a>
</li>
<li><a href="quapy.classification.html#quapy.classification.neural.CNNnet.document_embedding">document_embedding() (quapy.classification.neural.CNNnet method)</a>
<ul>
@ -284,6 +385,8 @@
<li><a href="quapy.method.html#quapy.method.aggregative.EMQ.EM">EM() (quapy.method.aggregative.EMQ class method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.EMQ">EMQ (class in quapy.method.aggregative)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.EMQ.EMQ_BCTS">EMQ_BCTS() (quapy.method.aggregative.EMQ class method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.meta.Ensemble">Ensemble (class in quapy.method.meta)</a>
</li>
@ -294,6 +397,8 @@
<li><a href="quapy.method.html#quapy.method.meta.EPACC">EPACC() (in module quapy.method.meta)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.EMQ.EPSILON">EPSILON (quapy.method.aggregative.EMQ attribute)</a>
</li>
<li><a href="quapy.html#quapy.model_selection.Status.ERROR">ERROR (quapy.model_selection.Status attribute)</a>
</li>
<li><a href="quapy.html#quapy.plot.error_by_drift">error_by_drift() (in module quapy.plot)</a>
</li>
@ -302,6 +407,8 @@
<li><a href="quapy.html#quapy.evaluation.evaluate_on_samples">evaluate_on_samples() (in module quapy.evaluation)</a>
</li>
<li><a href="quapy.html#quapy.evaluation.evaluation_report">evaluation_report() (in module quapy.evaluation)</a>
</li>
<li><a href="quapy.html#quapy.model_selection.expand_grid">expand_grid() (in module quapy.model_selection)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.ExpectationMaximizationQuantifier">ExpectationMaximizationQuantifier (in module quapy.method.aggregative)</a>
</li>
@ -314,6 +421,10 @@
<li><a href="quapy.html#quapy.error.f1_error">f1_error() (in module quapy.error)</a>
</li>
<li><a href="quapy.html#quapy.error.f1e">f1e() (in module quapy.error)</a>
</li>
<li><a href="quapy.html#quapy.model_selection.ConfigStatus.failed">failed() (quapy.model_selection.ConfigStatus method)</a>
</li>
<li><a href="quapy.data.html#quapy.data.datasets.fetch_IFCB">fetch_IFCB() (in module quapy.data.datasets)</a>
</li>
<li><a href="quapy.data.html#quapy.data.datasets.fetch_lequa2022">fetch_lequa2022() (in module quapy.data.datasets)</a>
</li>
@ -321,9 +432,13 @@
</li>
<li><a href="quapy.data.html#quapy.data.datasets.fetch_twitter">fetch_twitter() (in module quapy.data.datasets)</a>
</li>
<li><a href="quapy.data.html#quapy.data.datasets.fetch_UCIDataset">fetch_UCIDataset() (in module quapy.data.datasets)</a>
<li><a href="quapy.data.html#quapy.data.datasets.fetch_UCIBinaryDataset">fetch_UCIBinaryDataset() (in module quapy.data.datasets)</a>
</li>
<li><a href="quapy.data.html#quapy.data.datasets.fetch_UCILabelledCollection">fetch_UCILabelledCollection() (in module quapy.data.datasets)</a>
<li><a href="quapy.data.html#quapy.data.datasets.fetch_UCIBinaryLabelledCollection">fetch_UCIBinaryLabelledCollection() (in module quapy.data.datasets)</a>
</li>
<li><a href="quapy.data.html#quapy.data.datasets.fetch_UCIMulticlassDataset">fetch_UCIMulticlassDataset() (in module quapy.data.datasets)</a>
</li>
<li><a href="quapy.data.html#quapy.data.datasets.fetch_UCIMulticlassLabelledCollection">fetch_UCIMulticlassLabelledCollection() (in module quapy.data.datasets)</a>
</li>
<li><a href="quapy.classification.html#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit">fit() (quapy.classification.calibration.RecalibratedProbabilisticClassifierBase method)</a>
@ -336,27 +451,13 @@
</li>
<li><a href="quapy.data.html#quapy.data.preprocessing.IndexTransformer.fit">(quapy.data.preprocessing.IndexTransformer method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.ACC.fit">(quapy.method.aggregative.ACC method)</a>
<li><a href="quapy.method.html#quapy.method._neural.QuaNetTrainer.fit">(quapy.method._neural.QuaNetTrainer method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeMedianEstimator.fit">(quapy.method.aggregative.AggregativeMedianEstimator method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.fit">(quapy.method.aggregative.AggregativeQuantifier method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.CC.fit">(quapy.method.aggregative.CC method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.DistributionMatching.fit">(quapy.method.aggregative.DistributionMatching method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.DyS.fit">(quapy.method.aggregative.DyS method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.EMQ.fit">(quapy.method.aggregative.EMQ method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.HDy.fit">(quapy.method.aggregative.HDy method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.PACC.fit">(quapy.method.aggregative.PACC method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.PCC.fit">(quapy.method.aggregative.PCC method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.SMM.fit">(quapy.method.aggregative.SMM method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.ThresholdOptimization.fit">(quapy.method.aggregative.ThresholdOptimization method)</a>
<li><a href="quapy.method.html#quapy.method.aggregative.BinaryAggregativeQuantifier.fit">(quapy.method.aggregative.BinaryAggregativeQuantifier method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.base.BaseQuantifier.fit">(quapy.method.base.BaseQuantifier method)</a>
</li>
@ -364,7 +465,11 @@
</li>
<li><a href="quapy.method.html#quapy.method.meta.Ensemble.fit">(quapy.method.meta.Ensemble method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.neural.QuaNetTrainer.fit">(quapy.method.neural.QuaNetTrainer method)</a>
<li><a href="quapy.method.html#quapy.method.meta.MedianEstimator.fit">(quapy.method.meta.MedianEstimator method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.meta.MedianEstimator2.fit">(quapy.method.meta.MedianEstimator2 method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.non_aggregative.DMx.fit">(quapy.method.non_aggregative.DMx method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.fit">(quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation method)</a>
</li>
@ -382,7 +487,7 @@
<li><a href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.forward">forward() (quapy.classification.neural.TextClassifierNet method)</a>
<ul>
<li><a href="quapy.method.html#quapy.method.neural.QuaNetModule.forward">(quapy.method.neural.QuaNetModule method)</a>
<li><a href="quapy.method.html#quapy.method._neural.QuaNetModule.forward">(quapy.method._neural.QuaNetModule method)</a>
</li>
</ul></li>
<li><a href="quapy.data.html#quapy.data.reader.from_csv">from_csv() (in module quapy.data.reader)</a>
@ -400,8 +505,14 @@
<table style="width: 100%" class="indextable genindextable"><tr>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.html#quapy.protocol.OnLabelledCollectionProtocol.get_collator">get_collator() (quapy.protocol.OnLabelledCollectionProtocol class method)</a>
</li>
<li><a href="quapy.html#quapy.functional.get_divergence">get_divergence() (in module quapy.functional)</a>
</li>
<li><a href="quapy.method.html#quapy.method._kdey.KDEBase.get_kde_function">get_kde_function() (quapy.method._kdey.KDEBase method)</a>
</li>
<li><a href="quapy.html#quapy.protocol.OnLabelledCollectionProtocol.get_labelled_collection">get_labelled_collection() (quapy.protocol.OnLabelledCollectionProtocol method)</a>
</li>
<li><a href="quapy.method.html#quapy.method._kdey.KDEBase.get_mixture_components">get_mixture_components() (quapy.method._kdey.KDEBase method)</a>
</li>
<li><a href="quapy.html#quapy.functional.get_nprevpoints_approximation">get_nprevpoints_approximation() (in module quapy.functional)</a>
</li>
@ -415,10 +526,16 @@
<li><a href="quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.get_params">(quapy.classification.neural.NeuralClassifierTrainer method)</a>
</li>
<li><a href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.get_params">(quapy.classification.neural.TextClassifierNet method)</a>
</li>
<li><a href="quapy.method.html#quapy.method._neural.QuaNetTrainer.get_params">(quapy.method._neural.QuaNetTrainer method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeMedianEstimator.get_params">(quapy.method.aggregative.AggregativeMedianEstimator method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.meta.Ensemble.get_params">(quapy.method.meta.Ensemble method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.neural.QuaNetTrainer.get_params">(quapy.method.neural.QuaNetTrainer method)</a>
<li><a href="quapy.method.html#quapy.method.meta.MedianEstimator.get_params">(quapy.method.meta.MedianEstimator method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.meta.MedianEstimator2.get_params">(quapy.method.meta.MedianEstimator2 method)</a>
</li>
<li><a href="quapy.html#quapy.model_selection.GridSearchQ.get_params">(quapy.model_selection.GridSearchQ method)</a>
</li>
@ -435,7 +552,11 @@
<li><a href="quapy.method.html#quapy.method.aggregative.PACC.getPteCondEstim">(quapy.method.aggregative.PACC class method)</a>
</li>
</ul></li>
<li><a href="quapy.method.html#quapy.method._kdey.KDEyCS.gram_matrix_mix_sum">gram_matrix_mix_sum() (quapy.method._kdey.KDEyCS method)</a>
</li>
<li><a href="quapy.html#quapy.model_selection.GridSearchQ">GridSearchQ (class in quapy.model_selection)</a>
</li>
<li><a href="quapy.html#quapy.model_selection.group_params">group_params() (in module quapy.model_selection)</a>
</li>
</ul></td>
</tr></table>
@ -443,6 +564,8 @@
<h2 id="H">H</h2>
<table style="width: 100%" class="indextable genindextable"><tr>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method.non_aggregative.DMx.HDx">HDx() (quapy.method.non_aggregative.DMx class method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.HDy">HDy (class in quapy.method.aggregative)</a>
</li>
</ul></td>
@ -458,10 +581,12 @@
<table style="width: 100%" class="indextable genindextable"><tr>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.data.html#quapy.data.preprocessing.index">index() (in module quapy.data.preprocessing)</a>
</li>
<li><a href="quapy.data.html#quapy.data.preprocessing.IndexTransformer">IndexTransformer (class in quapy.data.preprocessing)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.data.html#quapy.data.preprocessing.IndexTransformer">IndexTransformer (class in quapy.data.preprocessing)</a>
<li><a href="quapy.html#quapy.model_selection.Status.INVALID">INVALID (quapy.model_selection.Status attribute)</a>
</li>
<li><a href="quapy.html#quapy.protocol.IterateProtocol">IterateProtocol (class in quapy.protocol)</a>
</li>
@ -479,14 +604,22 @@
<h2 id="K">K</h2>
<table style="width: 100%" class="indextable genindextable"><tr>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method._kdey.KDEBase">KDEBase (class in quapy.method._kdey)</a>
</li>
<li><a href="quapy.method.html#quapy.method._kdey.KDEyCS">KDEyCS (class in quapy.method._kdey)</a>
</li>
<li><a href="quapy.method.html#quapy.method._kdey.KDEyHD">KDEyHD (class in quapy.method._kdey)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method._kdey.KDEyML">KDEyML (class in quapy.method._kdey)</a>
</li>
<li><a href="quapy.data.html#quapy.data.base.Dataset.kFCV">kFCV() (quapy.data.base.Dataset class method)</a>
<ul>
<li><a href="quapy.data.html#quapy.data.base.LabelledCollection.kFCV">(quapy.data.base.LabelledCollection method)</a>
</li>
</ul></li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.html#quapy.error.kld">kld() (in module quapy.error)</a>
</li>
</ul></td>
@ -496,6 +629,8 @@
<table style="width: 100%" class="indextable genindextable"><tr>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.data.html#quapy.data.base.LabelledCollection">LabelledCollection (class in quapy.data.base)</a>
</li>
<li><a href="quapy.html#quapy.functional.linear_search">linear_search() (in module quapy.functional)</a>
</li>
<li><a href="quapy.data.html#quapy.data.base.Dataset.load">load() (quapy.data.base.Dataset class method)</a>
@ -517,33 +652,41 @@
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.html#quapy.error.mae">mae() (in module quapy.error)</a>
</li>
<li><a href="quapy.method.html#quapy.method.neural.mae_loss">mae_loss() (in module quapy.method.neural)</a>
<li><a href="quapy.method.html#quapy.method._neural.mae_loss">mae_loss() (in module quapy.method._neural)</a>
</li>
<li><a href="quapy.html#quapy.util.map_parallel">map_parallel() (in module quapy.util)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.MAX">MAX (class in quapy.method.aggregative)</a>
<li><a href="quapy.method.html#quapy.method._threshold_optim.MAX">MAX (class in quapy.method._threshold_optim)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.EMQ.MAX_ITER">MAX_ITER (quapy.method.aggregative.EMQ attribute)</a>
</li>
<li><a href="quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation">MaximumLikelihoodPrevalenceEstimation (class in quapy.method.non_aggregative)</a>
</li>
<li><a href="quapy.html#quapy.error.mean_absolute_error">mean_absolute_error() (in module quapy.error)</a>
</li>
<li><a href="quapy.html#quapy.error.mean_normalized_absolute_error">mean_normalized_absolute_error() (in module quapy.error)</a>
</li>
<li><a href="quapy.html#quapy.error.mean_normalized_relative_absolute_error">mean_normalized_relative_absolute_error() (in module quapy.error)</a>
</li>
<li><a href="quapy.html#quapy.error.mean_relative_absolute_error">mean_relative_absolute_error() (in module quapy.error)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.MedianSweep">MedianSweep (in module quapy.method.aggregative)</a>
<li><a href="quapy.method.html#quapy.method.meta.MedianEstimator">MedianEstimator (class in quapy.method.meta)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.MedianSweep2">MedianSweep2 (in module quapy.method.aggregative)</a>
<li><a href="quapy.method.html#quapy.method.meta.MedianEstimator2">MedianEstimator2 (class in quapy.method.meta)</a>
</li>
<li><a href="quapy.html#quapy.error.mkld">mkld() (in module quapy.error)</a>
</li>
<li><a href="quapy.html#quapy.error.mnae">mnae() (in module quapy.error)</a>
</li>
<li><a href="quapy.html#quapy.error.mnkld">mnkld() (in module quapy.error)</a>
</li>
<li><a href="quapy.html#quapy.error.mnrae">mnrae() (in module quapy.error)</a>
</li>
<li>
module
<ul>
<li><a href="quapy.html#module-quapy">quapy</a>
<li><a href="generated/quapy.html#module-quapy">quapy</a>, <a href="quapy.html#module-quapy">[1]</a>
</li>
<li><a href="quapy.classification.html#module-quapy.classification">quapy.classification</a>
</li>
@ -572,14 +715,18 @@
<li><a href="quapy.html#module-quapy.functional">quapy.functional</a>
</li>
<li><a href="quapy.method.html#module-quapy.method">quapy.method</a>
</li>
<li><a href="quapy.method.html#module-quapy.method._kdey">quapy.method._kdey</a>
</li>
<li><a href="quapy.method.html#module-quapy.method._neural">quapy.method._neural</a>
</li>
<li><a href="quapy.method.html#module-quapy.method._threshold_optim">quapy.method._threshold_optim</a>
</li>
<li><a href="quapy.method.html#module-quapy.method.aggregative">quapy.method.aggregative</a>
</li>
<li><a href="quapy.method.html#module-quapy.method.base">quapy.method.base</a>
</li>
<li><a href="quapy.method.html#module-quapy.method.meta">quapy.method.meta</a>
</li>
<li><a href="quapy.method.html#module-quapy.method.neural">quapy.method.neural</a>
</li>
<li><a href="quapy.method.html#module-quapy.method.non_aggregative">quapy.method.non_aggregative</a>
</li>
@ -596,9 +743,9 @@
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.html#quapy.error.mrae">mrae() (in module quapy.error)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.MS">MS (class in quapy.method.aggregative)</a>
<li><a href="quapy.method.html#quapy.method._threshold_optim.MS">MS (class in quapy.method._threshold_optim)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.MS2">MS2 (class in quapy.method.aggregative)</a>
<li><a href="quapy.method.html#quapy.method._threshold_optim.MS2">MS2 (class in quapy.method._threshold_optim)</a>
</li>
<li><a href="quapy.html#quapy.error.mse">mse() (in module quapy.error)</a>
</li>
@ -614,9 +761,13 @@
<li><a href="quapy.data.html#quapy.data.base.LabelledCollection.n_classes">(quapy.data.base.LabelledCollection property)</a>
</li>
</ul></li>
<li><a href="quapy.html#quapy.error.nae">nae() (in module quapy.error)</a>
</li>
<li><a href="quapy.html#quapy.protocol.NaturalPrevalenceProtocol">NaturalPrevalenceProtocol (in module quapy.protocol)</a>
</li>
<li><a href="quapy.classification.html#quapy.classification.calibration.NBVSCalibration">NBVSCalibration (class in quapy.classification.calibration)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.BinaryAggregativeQuantifier.neg_label">neg_label (quapy.method.aggregative.BinaryAggregativeQuantifier property)</a>
</li>
<li><a href="quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer">NeuralClassifierTrainer (class in quapy.classification.neural)</a>
</li>
@ -624,10 +775,10 @@
</li>
<li><a href="quapy.method.html#quapy.method.base.newOneVsAll">newOneVsAll() (in module quapy.method.base)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method.aggregative.newSVMAE">newSVMAE() (in module quapy.method.aggregative)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method.aggregative.newSVMKLD">newSVMKLD() (in module quapy.method.aggregative)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.newSVMQ">newSVMQ() (in module quapy.method.aggregative)</a>
@ -637,8 +788,14 @@
<li><a href="quapy.html#quapy.error.nkld">nkld() (in module quapy.error)</a>
</li>
<li><a href="quapy.html#quapy.functional.normalize_prevalence">normalize_prevalence() (in module quapy.functional)</a>
</li>
<li><a href="quapy.html#quapy.error.normalized_absolute_error">normalized_absolute_error() (in module quapy.error)</a>
</li>
<li><a href="quapy.html#quapy.error.normalized_relative_absolute_error">normalized_relative_absolute_error() (in module quapy.error)</a>
</li>
<li><a href="quapy.html#quapy.protocol.NPP">NPP (class in quapy.protocol)</a>
</li>
<li><a href="quapy.html#quapy.error.nrae">nrae() (in module quapy.error)</a>
</li>
<li><a href="quapy.html#quapy.functional.num_prevalence_combinations">num_prevalence_combinations() (in module quapy.functional)</a>
</li>
@ -652,13 +809,15 @@
</li>
<li><a href="quapy.method.html#quapy.method.base.OneVsAll">OneVsAll (class in quapy.method.base)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method.aggregative.OneVsAllAggregative">OneVsAllAggregative (class in quapy.method.aggregative)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method.base.OneVsAllGeneric">OneVsAllGeneric (class in quapy.method.base)</a>
</li>
<li><a href="quapy.html#quapy.protocol.OnLabelledCollectionProtocol">OnLabelledCollectionProtocol (class in quapy.protocol)</a>
</li>
<li><a href="quapy.html#quapy.functional.optim_minimize">optim_minimize() (in module quapy.functional)</a>
</li>
</ul></td>
</tr></table>
@ -673,8 +832,12 @@
<li><a href="quapy.html#quapy.util.parallel">parallel() (in module quapy.util)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.PCC">PCC (class in quapy.method.aggregative)</a>
</li>
<li><a href="quapy.method.html#quapy.method._kdey.KDEBase.pdf">pdf() (quapy.method._kdey.KDEBase method)</a>
</li>
<li><a href="quapy.html#quapy.util.pickled_resource">pickled_resource() (in module quapy.util)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.BinaryAggregativeQuantifier.pos_label">pos_label (quapy.method.aggregative.BinaryAggregativeQuantifier property)</a>
</li>
<li><a href="quapy.classification.html#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict">predict() (quapy.classification.calibration.RecalibratedProbabilisticClassifierBase method)</a>
@ -724,20 +887,28 @@
<h2 id="Q">Q</h2>
<table style="width: 100%" class="indextable genindextable"><tr>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method.neural.QuaNetModule">QuaNetModule (class in quapy.method.neural)</a>
<li><a href="quapy.method.html#quapy.method._neural.QuaNetModule">QuaNetModule (class in quapy.method._neural)</a>
</li>
<li><a href="quapy.method.html#quapy.method.neural.QuaNetTrainer">QuaNetTrainer (class in quapy.method.neural)</a>
<li><a href="quapy.method.html#quapy.method._neural.QuaNetTrainer">QuaNetTrainer (class in quapy.method._neural)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.quantify">quantify() (quapy.method.aggregative.AggregativeQuantifier method)</a>
<li><a href="quapy.method.html#quapy.method._neural.QuaNetTrainer.quantify">quantify() (quapy.method._neural.QuaNetTrainer method)</a>
<ul>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeMedianEstimator.quantify">(quapy.method.aggregative.AggregativeMedianEstimator method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.quantify">(quapy.method.aggregative.AggregativeQuantifier method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.base.BaseQuantifier.quantify">(quapy.method.base.BaseQuantifier method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.base.OneVsAllGeneric.quantify">(quapy.method.base.OneVsAllGeneric method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.meta.Ensemble.quantify">(quapy.method.meta.Ensemble method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.neural.QuaNetTrainer.quantify">(quapy.method.neural.QuaNetTrainer method)</a>
<li><a href="quapy.method.html#quapy.method.meta.MedianEstimator.quantify">(quapy.method.meta.MedianEstimator method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.meta.MedianEstimator2.quantify">(quapy.method.meta.MedianEstimator2 method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.non_aggregative.DMx.quantify">(quapy.method.non_aggregative.DMx method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.quantify">(quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation method)</a>
</li>
@ -748,7 +919,7 @@
quapy
<ul>
<li><a href="quapy.html#module-quapy">module</a>
<li><a href="generated/quapy.html#module-quapy">module</a>, <a href="quapy.html#module-quapy">[1]</a>
</li>
</ul></li>
<li>
@ -849,6 +1020,27 @@
<ul>
<li><a href="quapy.method.html#module-quapy.method">module</a>
</li>
</ul></li>
<li>
quapy.method._kdey
<ul>
<li><a href="quapy.method.html#module-quapy.method._kdey">module</a>
</li>
</ul></li>
<li>
quapy.method._neural
<ul>
<li><a href="quapy.method.html#module-quapy.method._neural">module</a>
</li>
</ul></li>
<li>
quapy.method._threshold_optim
<ul>
<li><a href="quapy.method.html#module-quapy.method._threshold_optim">module</a>
</li>
</ul></li>
<li>
@ -870,13 +1062,6 @@
<ul>
<li><a href="quapy.method.html#module-quapy.method.meta">module</a>
</li>
</ul></li>
<li>
quapy.method.neural
<ul>
<li><a href="quapy.method.html#module-quapy.method.neural">module</a>
</li>
</ul></li>
<li>
@ -986,10 +1171,16 @@
<ul>
<li><a href="quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.set_params">(quapy.classification.neural.NeuralClassifierTrainer method)</a>
</li>
<li><a href="quapy.method.html#quapy.method._neural.QuaNetTrainer.set_params">(quapy.method._neural.QuaNetTrainer method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeMedianEstimator.set_params">(quapy.method.aggregative.AggregativeMedianEstimator method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.meta.Ensemble.set_params">(quapy.method.meta.Ensemble method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.neural.QuaNetTrainer.set_params">(quapy.method.neural.QuaNetTrainer method)</a>
<li><a href="quapy.method.html#quapy.method.meta.MedianEstimator.set_params">(quapy.method.meta.MedianEstimator method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.meta.MedianEstimator2.set_params">(quapy.method.meta.MedianEstimator2 method)</a>
</li>
<li><a href="quapy.html#quapy.model_selection.GridSearchQ.set_params">(quapy.model_selection.GridSearchQ method)</a>
</li>
@ -1018,7 +1209,13 @@
<li><a href="quapy.data.html#quapy.data.base.LabelledCollection.stats">(quapy.data.base.LabelledCollection method)</a>
</li>
</ul></li>
<li><a href="quapy.html#quapy.model_selection.Status">Status (class in quapy.model_selection)</a>
</li>
<li><a href="quapy.html#quapy.functional.strprev">strprev() (in module quapy.functional)</a>
</li>
<li><a href="quapy.html#quapy.model_selection.Status.SUCCESS">SUCCESS (quapy.model_selection.Status attribute)</a>
</li>
<li><a href="quapy.html#quapy.model_selection.ConfigStatus.success">success() (quapy.model_selection.ConfigStatus method)</a>
</li>
<li><a href="quapy.classification.html#quapy.classification.svmperf.SVMperf">SVMperf (class in quapy.classification.svmperf)</a>
</li>
@ -1028,7 +1225,7 @@
<h2 id="T">T</h2>
<table style="width: 100%" class="indextable genindextable"><tr>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method.aggregative.T50">T50 (class in quapy.method.aggregative)</a>
<li><a href="quapy.method.html#quapy.method._threshold_optim.T50">T50 (class in quapy.method._threshold_optim)</a>
</li>
<li><a href="quapy.html#quapy.util.temp_seed">temp_seed() (in module quapy.util)</a>
</li>
@ -1036,7 +1233,11 @@
</li>
<li><a href="quapy.classification.html#quapy.classification.neural.TextClassifierNet">TextClassifierNet (class in quapy.classification.neural)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.ThresholdOptimization">ThresholdOptimization (class in quapy.method.aggregative)</a>
<li><a href="quapy.method.html#quapy.method._threshold_optim.ThresholdOptimization">ThresholdOptimization (class in quapy.method._threshold_optim)</a>
</li>
<li><a href="quapy.html#quapy.model_selection.Status.TIMEOUT">TIMEOUT (quapy.model_selection.Status attribute)</a>
</li>
<li><a href="quapy.html#quapy.util.timeout">timeout() (in module quapy.util)</a>
</li>
<li><a href="quapy.html#quapy.functional.TopsoeDistance">TopsoeDistance() (in module quapy.functional)</a>
</li>
@ -1060,16 +1261,6 @@
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.data.html#quapy.data.base.Dataset.train_test">train_test (quapy.data.base.Dataset property)</a>
</li>
<li><a href="quapy.classification.html#quapy.classification.neural.CNNnet.training">training (quapy.classification.neural.CNNnet attribute)</a>
<ul>
<li><a href="quapy.classification.html#quapy.classification.neural.LSTMnet.training">(quapy.classification.neural.LSTMnet attribute)</a>
</li>
<li><a href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.training">(quapy.classification.neural.TextClassifierNet attribute)</a>
</li>
<li><a href="quapy.method.html#quapy.method.neural.QuaNetModule.training">(quapy.method.neural.QuaNetModule attribute)</a>
</li>
</ul></li>
<li><a href="quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.transform">transform() (quapy.classification.methods.LowRankLogisticRegression method)</a>
<ul>
@ -1106,6 +1297,10 @@
<h2 id="V">V</h2>
<table style="width: 100%" class="indextable genindextable"><tr>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.val_split">val_split (quapy.method.aggregative.AggregativeQuantifier property)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.val_split_">val_split_ (quapy.method.aggregative.AggregativeQuantifier attribute)</a>
</li>
<li><a href="quapy.classification.html#quapy.classification.svmperf.SVMperf.valid_losses">valid_losses (quapy.classification.svmperf.SVMperf attribute)</a>
</li>
<li><a href="quapy.method.html#quapy.method.meta.Ensemble.VALID_POLICIES">VALID_POLICIES (quapy.method.meta.Ensemble attribute)</a>
@ -1140,7 +1335,7 @@
<h2 id="X">X</h2>
<table style="width: 100%" class="indextable genindextable"><tr>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method.aggregative.X">X (class in quapy.method.aggregative)</a>
<li><a href="quapy.method.html#quapy.method._threshold_optim.X">X (class in quapy.method._threshold_optim)</a>
<ul>
<li><a href="quapy.data.html#quapy.data.base.LabelledCollection.X">(quapy.data.base.LabelledCollection property)</a>
@ -1167,42 +1362,31 @@
<div class="clearer"></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>&#169; Copyright 2024, Alejandro Moreo.</p>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>document.getElementById('searchbox').style.display = "block"</script>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
<div class="clearer"></div>
</section>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="#" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Index</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2021, Alejandro Moreo.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 5.3.0.
</div>
</body>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>

View File

@ -1,171 +1,679 @@
<!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./">
<head>
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Welcome to QuaPys documentation! &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.8 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=92fd9be5" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=19f00094" />
<!doctype html>
<!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script>
<![endif]-->
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<title>Welcome to QuaPys documentation! &#8212; QuaPy 0.1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/bizstyle.js"></script>
<script src="_static/jquery.js?v=5d32c60e"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="_static/documentation_options.js?v=22607128"></script>
<script src="_static/doctools.js?v=9a2dae69"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Installation" href="Installation.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="Installation.html" title="Installation"
accesskey="N">next</a> |</li>
<li class="nav-item nav-item-0"><a href="#">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Welcome to QuaPys documentation!</a></li>
</ul>
</div>
<link rel="next" title="quapy" href="modules.html" />
</head>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="#" class="icon icon-home">
QuaPy: A Python-based open-source framework for quantification
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<ul>
<li class="toctree-l1"><a class="reference internal" href="modules.html">quapy</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="#">QuaPy: A Python-based open-source framework for quantification</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="#" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item active">Welcome to QuaPys documentation!</li>
<li class="wy-breadcrumbs-aside">
<a href="_sources/index.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<section id="welcome-to-quapy-s-documentation">
<h1>Welcome to QuaPys documentation!<a class="headerlink" href="#welcome-to-quapy-s-documentation" title="Permalink to this heading"></a></h1>
<p>QuaPy is an open source framework for Quantification (a.k.a. Supervised Prevalence Estimation)
written in Python.</p>
<section id="introduction">
<h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this heading"></a></h2>
<p>QuaPy roots on the concept of data sample, and provides implementations of most important concepts
in quantification literature, such as the most important quantification baselines, many advanced
quantification methods, quantification-oriented model selection, many evaluation measures and protocols
used for evaluating quantification methods.
QuaPy also integrates commonly used datasets and offers visualization tools for facilitating the analysis and
interpretation of results.</p>
<section id="a-quick-example">
<h3>A quick example:<a class="headerlink" href="#a-quick-example" title="Permalink to this heading"></a></h3>
<p>The following script fetchs a Twitter dataset, trains and evaluates an
<cite>Adjusted Classify &amp; Count</cite> model in terms of the <cite>Mean Absolute Error</cite> (MAE)
between the class prevalences estimated for the test set and the true prevalences
of the test set.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <span class="n">LogisticRegression</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_twitter</span><span class="p">(</span><span class="s1">&#39;semeval16&#39;</span><span class="p">)</span>
<span class="c1"># create an &quot;Adjusted Classify &amp; Count&quot; quantifier</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">method</span><span class="o">.</span><span class="n">aggregative</span><span class="o">.</span><span class="n">ACC</span><span class="p">(</span><span class="n">LogisticRegression</span><span class="p">())</span>
<span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">training</span><span class="p">)</span>
<span class="n">estim_prevalences</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">quantify</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">test</span><span class="o">.</span><span class="n">instances</span><span class="p">)</span>
<span class="n">true_prevalences</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">test</span><span class="o">.</span><span class="n">prevalence</span><span class="p">()</span>
<span class="n">error</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">error</span><span class="o">.</span><span class="n">mae</span><span class="p">(</span><span class="n">true_prevalences</span><span class="p">,</span> <span class="n">estim_prevalences</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;Mean Absolute Error (MAE)=</span><span class="si">{</span><span class="n">error</span><span class="si">:</span><span class="s1">.3f</span><span class="si">}</span><span class="s1">&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Quantification is useful in scenarios of prior probability shift. In other
words, we would not be interested in estimating the class prevalences of the test set if
we could assume the IID assumption to hold, as this prevalence would simply coincide with the
class prevalence of the training set. For this reason, any Quantification model
should be tested across samples characterized by different class prevalences.
QuaPy implements sampling procedures and evaluation protocols that automates this endeavour.
See the <a class="reference internal" href="Evaluation.html"><span class="doc">Evaluation</span></a> for detailed examples.</p>
<h1>Welcome to QuaPys documentation!<a class="headerlink" href="#welcome-to-quapy-s-documentation" title="Link to this heading"></a></h1>
<p>QuaPy is a Python-based open-source framework for quantification.</p>
<p>This document contains the API of the modules included in QuaPy.</p>
<section id="installation">
<h2>Installation<a class="headerlink" href="#installation" title="Link to this heading"></a></h2>
<p><cite>pip install quapy</cite></p>
</section>
<section id="features">
<h3>Features<a class="headerlink" href="#features" title="Permalink to this heading"></a></h3>
<ul class="simple">
<li><p>Implementation of most popular quantification methods (Classify-&amp;-Count variants, Expectation-Maximization, SVM-based variants for quantification, HDy, QuaNet, and Ensembles).</p></li>
<li><p>Versatile functionality for performing evaluation based on artificial sampling protocols.</p></li>
<li><p>Implementation of most commonly used evaluation metrics (e.g., MAE, MRAE, MSE, NKLD, etc.).</p></li>
<li><dl class="simple">
<dt>Popular datasets for Quantification (textual and numeric) available, including:</dt><dd><ul>
<li><p>32 UCI Machine Learning datasets.</p></li>
<li><p>11 Twitter Sentiment datasets.</p></li>
<li><p>3 Reviews Sentiment datasets.</p></li>
<li><p>4 tasks from LeQua competition (_new in v0.1.7!_)</p></li>
</ul>
</dd>
</dl>
</li>
<li><p>Native supports for binary and single-label scenarios of quantification.</p></li>
<li><p>Model selection functionality targeting quantification-oriented losses.</p></li>
<li><p>Visualization tools for analysing results.</p></li>
</ul>
<section id="github">
<h2>GitHub<a class="headerlink" href="#github" title="Link to this heading"></a></h2>
<p>QuaPy is hosted in GitHub at <a class="reference external" href="https://github.com/HLT-ISTI/QuaPy">https://github.com/HLT-ISTI/QuaPy</a></p>
<div class="toctree-wrapper compound">
</div>
</section>
<section id="contents">
<h2>Contents<a class="headerlink" href="#contents" title="Link to this heading"></a></h2>
<div class="toctree-wrapper compound">
<p class="caption" role="heading"><span class="caption-text">Contents:</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="Installation.html">Installation</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Installation.html#requirements">Requirements</a></li>
<li class="toctree-l2"><a class="reference internal" href="Installation.html#svm-perf-with-quantification-oriented-losses">SVM-perf with quantification-oriented losses</a></li>
<li class="toctree-l1"><a class="reference internal" href="modules.html">quapy</a><ul>
<li class="toctree-l2"><a class="reference internal" href="quapy.html">quapy package</a><ul>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#subpackages">Subpackages</a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.classification.html">quapy.classification package</a><ul>
<li class="toctree-l5"><a class="reference internal" href="quapy.classification.html#submodules">Submodules</a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.classification.html#module-quapy.classification.calibration">quapy.classification.calibration module</a><ul>
<li class="toctree-l6"><a class="reference internal" href="quapy.classification.html#quapy.classification.calibration.BCTSCalibration"><code class="docutils literal notranslate"><span class="pre">BCTSCalibration</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.classification.html#quapy.classification.calibration.NBVSCalibration"><code class="docutils literal notranslate"><span class="pre">NBVSCalibration</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.classification.html#quapy.classification.calibration.RecalibratedProbabilisticClassifier"><code class="docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifier</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.classification.html#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase"><code class="docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.classes_"><code class="docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase.classes_</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit"><code class="docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_cv"><code class="docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase.fit_cv()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_tr_val"><code class="docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase.fit_tr_val()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict"><code class="docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase.predict()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict_proba"><code class="docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase.predict_proba()</span></code></a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Datasets.html">Datasets</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Datasets.html#reviews-datasets">Reviews Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="Datasets.html#twitter-sentiment-datasets">Twitter Sentiment Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="Datasets.html#uci-machine-learning">UCI Machine Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="Datasets.html#lequa-datasets">LeQua Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="Datasets.html#adding-custom-datasets">Adding Custom Datasets</a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.classification.html#quapy.classification.calibration.TSCalibration"><code class="docutils literal notranslate"><span class="pre">TSCalibration</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.classification.html#quapy.classification.calibration.VSCalibration"><code class="docutils literal notranslate"><span class="pre">VSCalibration</span></code></a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Evaluation.html">Evaluation</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Evaluation.html#error-measures">Error Measures</a></li>
<li class="toctree-l2"><a class="reference internal" href="Evaluation.html#evaluation-protocols">Evaluation Protocols</a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.classification.html#module-quapy.classification.methods">quapy.classification.methods module</a><ul>
<li class="toctree-l6"><a class="reference internal" href="quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression"><code class="docutils literal notranslate"><span class="pre">LowRankLogisticRegression</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.fit"><code class="docutils literal notranslate"><span class="pre">LowRankLogisticRegression.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.get_params"><code class="docutils literal notranslate"><span class="pre">LowRankLogisticRegression.get_params()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.predict"><code class="docutils literal notranslate"><span class="pre">LowRankLogisticRegression.predict()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.predict_proba"><code class="docutils literal notranslate"><span class="pre">LowRankLogisticRegression.predict_proba()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.set_params"><code class="docutils literal notranslate"><span class="pre">LowRankLogisticRegression.set_params()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.transform"><code class="docutils literal notranslate"><span class="pre">LowRankLogisticRegression.transform()</span></code></a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Protocols.html">Protocols</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Protocols.html#artificial-prevalence-protocol">Artificial-Prevalence Protocol</a></li>
<li class="toctree-l2"><a class="reference internal" href="Protocols.html#sampling-from-the-unit-simplex-the-uniform-prevalence-protocol-upp">Sampling from the unit-simplex, the Uniform-Prevalence Protocol (UPP)</a></li>
<li class="toctree-l2"><a class="reference internal" href="Protocols.html#natural-prevalence-protocol">Natural-Prevalence Protocol</a></li>
<li class="toctree-l2"><a class="reference internal" href="Protocols.html#other-protocols">Other protocols</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Methods.html">Quantification Methods</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Methods.html#aggregative-methods">Aggregative Methods</a></li>
<li class="toctree-l2"><a class="reference internal" href="Methods.html#meta-models">Meta Models</a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.classification.html#module-quapy.classification.neural">quapy.classification.neural module</a><ul>
<li class="toctree-l6"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.CNNnet"><code class="docutils literal notranslate"><span class="pre">CNNnet</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.CNNnet.document_embedding"><code class="docutils literal notranslate"><span class="pre">CNNnet.document_embedding()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.CNNnet.get_params"><code class="docutils literal notranslate"><span class="pre">CNNnet.get_params()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.CNNnet.vocabulary_size"><code class="docutils literal notranslate"><span class="pre">CNNnet.vocabulary_size</span></code></a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Model-Selection.html">Model Selection</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Model-Selection.html#targeting-a-quantification-oriented-loss">Targeting a Quantification-oriented loss</a></li>
<li class="toctree-l2"><a class="reference internal" href="Model-Selection.html#targeting-a-classification-oriented-loss">Targeting a Classification-oriented loss</a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.LSTMnet"><code class="docutils literal notranslate"><span class="pre">LSTMnet</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.LSTMnet.document_embedding"><code class="docutils literal notranslate"><span class="pre">LSTMnet.document_embedding()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.LSTMnet.get_params"><code class="docutils literal notranslate"><span class="pre">LSTMnet.get_params()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.LSTMnet.vocabulary_size"><code class="docutils literal notranslate"><span class="pre">LSTMnet.vocabulary_size</span></code></a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Plotting.html">Plotting</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Plotting.html#diagonal-plot">Diagonal Plot</a></li>
<li class="toctree-l2"><a class="reference internal" href="Plotting.html#quantification-bias">Quantification bias</a></li>
<li class="toctree-l2"><a class="reference internal" href="Plotting.html#error-by-drift">Error by Drift</a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer"><code class="docutils literal notranslate"><span class="pre">NeuralClassifierTrainer</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.device"><code class="docutils literal notranslate"><span class="pre">NeuralClassifierTrainer.device</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.fit"><code class="docutils literal notranslate"><span class="pre">NeuralClassifierTrainer.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.get_params"><code class="docutils literal notranslate"><span class="pre">NeuralClassifierTrainer.get_params()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.predict"><code class="docutils literal notranslate"><span class="pre">NeuralClassifierTrainer.predict()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.predict_proba"><code class="docutils literal notranslate"><span class="pre">NeuralClassifierTrainer.predict_proba()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.reset_net_params"><code class="docutils literal notranslate"><span class="pre">NeuralClassifierTrainer.reset_net_params()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.set_params"><code class="docutils literal notranslate"><span class="pre">NeuralClassifierTrainer.set_params()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.transform"><code class="docutils literal notranslate"><span class="pre">NeuralClassifierTrainer.transform()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.dimensions"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.dimensions()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.document_embedding"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.document_embedding()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.forward"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.forward()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.get_params"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.get_params()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.predict_proba"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.predict_proba()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.vocabulary_size"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.vocabulary_size</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.xavier_uniform"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.xavier_uniform()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TorchDataset"><code class="docutils literal notranslate"><span class="pre">TorchDataset</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TorchDataset.asDataloader"><code class="docutils literal notranslate"><span class="pre">TorchDataset.asDataloader()</span></code></a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l5"><a class="reference internal" href="quapy.classification.html#module-quapy.classification.svmperf">quapy.classification.svmperf module</a><ul>
<li class="toctree-l6"><a class="reference internal" href="quapy.classification.html#quapy.classification.svmperf.SVMperf"><code class="docutils literal notranslate"><span class="pre">SVMperf</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.svmperf.SVMperf.decision_function"><code class="docutils literal notranslate"><span class="pre">SVMperf.decision_function()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.svmperf.SVMperf.fit"><code class="docutils literal notranslate"><span class="pre">SVMperf.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.svmperf.SVMperf.predict"><code class="docutils literal notranslate"><span class="pre">SVMperf.predict()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.svmperf.SVMperf.valid_losses"><code class="docutils literal notranslate"><span class="pre">SVMperf.valid_losses</span></code></a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l5"><a class="reference internal" href="quapy.classification.html#module-quapy.classification">Module contents</a></li>
</ul>
</li>
<li class="toctree-l4"><a class="reference internal" href="quapy.data.html">quapy.data package</a><ul>
<li class="toctree-l5"><a class="reference internal" href="quapy.data.html#submodules">Submodules</a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.data.html#module-quapy.data.base">quapy.data.base module</a><ul>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.base.Dataset"><code class="docutils literal notranslate"><span class="pre">Dataset</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.Dataset.SplitStratified"><code class="docutils literal notranslate"><span class="pre">Dataset.SplitStratified()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.Dataset.binary"><code class="docutils literal notranslate"><span class="pre">Dataset.binary</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.Dataset.classes_"><code class="docutils literal notranslate"><span class="pre">Dataset.classes_</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.Dataset.kFCV"><code class="docutils literal notranslate"><span class="pre">Dataset.kFCV()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.Dataset.load"><code class="docutils literal notranslate"><span class="pre">Dataset.load()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.Dataset.n_classes"><code class="docutils literal notranslate"><span class="pre">Dataset.n_classes</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.Dataset.reduce"><code class="docutils literal notranslate"><span class="pre">Dataset.reduce()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.Dataset.stats"><code class="docutils literal notranslate"><span class="pre">Dataset.stats()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.Dataset.train_test"><code class="docutils literal notranslate"><span class="pre">Dataset.train_test</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.Dataset.vocabulary_size"><code class="docutils literal notranslate"><span class="pre">Dataset.vocabulary_size</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection"><code class="docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.X"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.X</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.Xp"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.Xp</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.Xy"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.Xy</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.binary"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.binary</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.counts"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.counts()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.join"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.join()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.kFCV"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.kFCV()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.load"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.load()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.n_classes"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.n_classes</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.p"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.p</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.prevalence"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.prevalence()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.sampling"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.sampling()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.sampling_from_index"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.sampling_from_index()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.sampling_index"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.sampling_index()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.split_random"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.split_random()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.split_stratified"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.split_stratified()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.stats"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.stats()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.uniform_sampling"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.uniform_sampling()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.uniform_sampling_index"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.uniform_sampling_index()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection.y"><code class="docutils literal notranslate"><span class="pre">LabelledCollection.y</span></code></a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l5"><a class="reference internal" href="quapy.data.html#module-quapy.data.datasets">quapy.data.datasets module</a><ul>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.datasets.fetch_IFCB"><code class="docutils literal notranslate"><span class="pre">fetch_IFCB()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.datasets.fetch_UCIBinaryDataset"><code class="docutils literal notranslate"><span class="pre">fetch_UCIBinaryDataset()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.datasets.fetch_UCIBinaryLabelledCollection"><code class="docutils literal notranslate"><span class="pre">fetch_UCIBinaryLabelledCollection()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.datasets.fetch_UCIMulticlassDataset"><code class="docutils literal notranslate"><span class="pre">fetch_UCIMulticlassDataset()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.datasets.fetch_UCIMulticlassLabelledCollection"><code class="docutils literal notranslate"><span class="pre">fetch_UCIMulticlassLabelledCollection()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.datasets.fetch_lequa2022"><code class="docutils literal notranslate"><span class="pre">fetch_lequa2022()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.datasets.fetch_reviews"><code class="docutils literal notranslate"><span class="pre">fetch_reviews()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.datasets.fetch_twitter"><code class="docutils literal notranslate"><span class="pre">fetch_twitter()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.datasets.warn"><code class="docutils literal notranslate"><span class="pre">warn()</span></code></a></li>
</ul>
</li>
<li class="toctree-l5"><a class="reference internal" href="quapy.data.html#module-quapy.data.preprocessing">quapy.data.preprocessing module</a><ul>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.preprocessing.IndexTransformer"><code class="docutils literal notranslate"><span class="pre">IndexTransformer</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.preprocessing.IndexTransformer.add_word"><code class="docutils literal notranslate"><span class="pre">IndexTransformer.add_word()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.preprocessing.IndexTransformer.fit"><code class="docutils literal notranslate"><span class="pre">IndexTransformer.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.preprocessing.IndexTransformer.fit_transform"><code class="docutils literal notranslate"><span class="pre">IndexTransformer.fit_transform()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.preprocessing.IndexTransformer.transform"><code class="docutils literal notranslate"><span class="pre">IndexTransformer.transform()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.data.html#quapy.data.preprocessing.IndexTransformer.vocabulary_size"><code class="docutils literal notranslate"><span class="pre">IndexTransformer.vocabulary_size()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.preprocessing.index"><code class="docutils literal notranslate"><span class="pre">index()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.preprocessing.reduce_columns"><code class="docutils literal notranslate"><span class="pre">reduce_columns()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.preprocessing.standardize"><code class="docutils literal notranslate"><span class="pre">standardize()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.preprocessing.text2tfidf"><code class="docutils literal notranslate"><span class="pre">text2tfidf()</span></code></a></li>
</ul>
</li>
<li class="toctree-l5"><a class="reference internal" href="quapy.data.html#module-quapy.data.reader">quapy.data.reader module</a><ul>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.reader.binarize"><code class="docutils literal notranslate"><span class="pre">binarize()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.reader.from_csv"><code class="docutils literal notranslate"><span class="pre">from_csv()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.reader.from_sparse"><code class="docutils literal notranslate"><span class="pre">from_sparse()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.reader.from_text"><code class="docutils literal notranslate"><span class="pre">from_text()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.data.html#quapy.data.reader.reindex_labels"><code class="docutils literal notranslate"><span class="pre">reindex_labels()</span></code></a></li>
</ul>
</li>
<li class="toctree-l5"><a class="reference internal" href="quapy.data.html#module-quapy.data">Module contents</a></li>
</ul>
</li>
<li class="toctree-l4"><a class="reference internal" href="quapy.method.html">quapy.method package</a><ul>
<li class="toctree-l5"><a class="reference internal" href="quapy.method.html#submodules">Submodules</a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.method.html#module-quapy.method.aggregative">quapy.method.aggregative module</a><ul>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC"><code class="docutils literal notranslate"><span class="pre">ACC</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC.aggregate"><code class="docutils literal notranslate"><span class="pre">ACC.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">ACC.aggregation_fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC.getPteCondEstim"><code class="docutils literal notranslate"><span class="pre">ACC.getPteCondEstim()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC.solve_adjustment"><code class="docutils literal notranslate"><span class="pre">ACC.solve_adjustment()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AdjustedClassifyAndCount"><code class="docutils literal notranslate"><span class="pre">AdjustedClassifyAndCount</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeCrispQuantifier"><code class="docutils literal notranslate"><span class="pre">AggregativeCrispQuantifier</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeMedianEstimator"><code class="docutils literal notranslate"><span class="pre">AggregativeMedianEstimator</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeMedianEstimator.fit"><code class="docutils literal notranslate"><span class="pre">AggregativeMedianEstimator.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeMedianEstimator.get_params"><code class="docutils literal notranslate"><span class="pre">AggregativeMedianEstimator.get_params()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeMedianEstimator.quantify"><code class="docutils literal notranslate"><span class="pre">AggregativeMedianEstimator.quantify()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeMedianEstimator.set_params"><code class="docutils literal notranslate"><span class="pre">AggregativeMedianEstimator.set_params()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier"><code class="docutils literal notranslate"><span class="pre">AggregativeQuantifier</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.aggregate"><code class="docutils literal notranslate"><span class="pre">AggregativeQuantifier.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">AggregativeQuantifier.aggregation_fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.classes_"><code class="docutils literal notranslate"><span class="pre">AggregativeQuantifier.classes_</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.classifier"><code class="docutils literal notranslate"><span class="pre">AggregativeQuantifier.classifier</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.classifier_fit_predict"><code class="docutils literal notranslate"><span class="pre">AggregativeQuantifier.classifier_fit_predict()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.classify"><code class="docutils literal notranslate"><span class="pre">AggregativeQuantifier.classify()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.fit"><code class="docutils literal notranslate"><span class="pre">AggregativeQuantifier.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.quantify"><code class="docutils literal notranslate"><span class="pre">AggregativeQuantifier.quantify()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.val_split"><code class="docutils literal notranslate"><span class="pre">AggregativeQuantifier.val_split</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.val_split_"><code class="docutils literal notranslate"><span class="pre">AggregativeQuantifier.val_split_</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeSoftQuantifier"><code class="docutils literal notranslate"><span class="pre">AggregativeSoftQuantifier</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.BinaryAggregativeQuantifier"><code class="docutils literal notranslate"><span class="pre">BinaryAggregativeQuantifier</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.BinaryAggregativeQuantifier.fit"><code class="docutils literal notranslate"><span class="pre">BinaryAggregativeQuantifier.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.BinaryAggregativeQuantifier.neg_label"><code class="docutils literal notranslate"><span class="pre">BinaryAggregativeQuantifier.neg_label</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.BinaryAggregativeQuantifier.pos_label"><code class="docutils literal notranslate"><span class="pre">BinaryAggregativeQuantifier.pos_label</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.CC"><code class="docutils literal notranslate"><span class="pre">CC</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.CC.aggregate"><code class="docutils literal notranslate"><span class="pre">CC.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.CC.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">CC.aggregation_fit()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ClassifyAndCount"><code class="docutils literal notranslate"><span class="pre">ClassifyAndCount</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.DMy"><code class="docutils literal notranslate"><span class="pre">DMy</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.DMy.aggregate"><code class="docutils literal notranslate"><span class="pre">DMy.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.DMy.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">DMy.aggregation_fit()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.DistributionMatchingY"><code class="docutils literal notranslate"><span class="pre">DistributionMatchingY</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.DyS"><code class="docutils literal notranslate"><span class="pre">DyS</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.DyS.aggregate"><code class="docutils literal notranslate"><span class="pre">DyS.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.DyS.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">DyS.aggregation_fit()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.EMQ"><code class="docutils literal notranslate"><span class="pre">EMQ</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.EMQ.EM"><code class="docutils literal notranslate"><span class="pre">EMQ.EM()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.EMQ.EMQ_BCTS"><code class="docutils literal notranslate"><span class="pre">EMQ.EMQ_BCTS()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.EMQ.EPSILON"><code class="docutils literal notranslate"><span class="pre">EMQ.EPSILON</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.EMQ.MAX_ITER"><code class="docutils literal notranslate"><span class="pre">EMQ.MAX_ITER</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.EMQ.aggregate"><code class="docutils literal notranslate"><span class="pre">EMQ.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.EMQ.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">EMQ.aggregation_fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.EMQ.classify"><code class="docutils literal notranslate"><span class="pre">EMQ.classify()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.EMQ.predict_proba"><code class="docutils literal notranslate"><span class="pre">EMQ.predict_proba()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ExpectationMaximizationQuantifier"><code class="docutils literal notranslate"><span class="pre">ExpectationMaximizationQuantifier</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.HDy"><code class="docutils literal notranslate"><span class="pre">HDy</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.HDy.aggregate"><code class="docutils literal notranslate"><span class="pre">HDy.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.HDy.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">HDy.aggregation_fit()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.HellingerDistanceY"><code class="docutils literal notranslate"><span class="pre">HellingerDistanceY</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.OneVsAllAggregative"><code class="docutils literal notranslate"><span class="pre">OneVsAllAggregative</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.OneVsAllAggregative.aggregate"><code class="docutils literal notranslate"><span class="pre">OneVsAllAggregative.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.OneVsAllAggregative.classify"><code class="docutils literal notranslate"><span class="pre">OneVsAllAggregative.classify()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.PACC"><code class="docutils literal notranslate"><span class="pre">PACC</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.PACC.aggregate"><code class="docutils literal notranslate"><span class="pre">PACC.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.PACC.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">PACC.aggregation_fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.PACC.getPteCondEstim"><code class="docutils literal notranslate"><span class="pre">PACC.getPteCondEstim()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.PCC"><code class="docutils literal notranslate"><span class="pre">PCC</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.PCC.aggregate"><code class="docutils literal notranslate"><span class="pre">PCC.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.PCC.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">PCC.aggregation_fit()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ProbabilisticAdjustedClassifyAndCount"><code class="docutils literal notranslate"><span class="pre">ProbabilisticAdjustedClassifyAndCount</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ProbabilisticClassifyAndCount"><code class="docutils literal notranslate"><span class="pre">ProbabilisticClassifyAndCount</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.SLD"><code class="docutils literal notranslate"><span class="pre">SLD</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.SMM"><code class="docutils literal notranslate"><span class="pre">SMM</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.SMM.aggregate"><code class="docutils literal notranslate"><span class="pre">SMM.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.SMM.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">SMM.aggregation_fit()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.newELM"><code class="docutils literal notranslate"><span class="pre">newELM()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.newSVMAE"><code class="docutils literal notranslate"><span class="pre">newSVMAE()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.newSVMKLD"><code class="docutils literal notranslate"><span class="pre">newSVMKLD()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.newSVMQ"><code class="docutils literal notranslate"><span class="pre">newSVMQ()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.newSVMRAE"><code class="docutils literal notranslate"><span class="pre">newSVMRAE()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method._kdey.KDEBase"><code class="docutils literal notranslate"><span class="pre">KDEBase</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._kdey.KDEBase.BANDWIDTH_METHOD"><code class="docutils literal notranslate"><span class="pre">KDEBase.BANDWIDTH_METHOD</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._kdey.KDEBase.get_kde_function"><code class="docutils literal notranslate"><span class="pre">KDEBase.get_kde_function()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._kdey.KDEBase.get_mixture_components"><code class="docutils literal notranslate"><span class="pre">KDEBase.get_mixture_components()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._kdey.KDEBase.pdf"><code class="docutils literal notranslate"><span class="pre">KDEBase.pdf()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method._kdey.KDEyCS"><code class="docutils literal notranslate"><span class="pre">KDEyCS</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._kdey.KDEyCS.aggregate"><code class="docutils literal notranslate"><span class="pre">KDEyCS.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._kdey.KDEyCS.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">KDEyCS.aggregation_fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._kdey.KDEyCS.gram_matrix_mix_sum"><code class="docutils literal notranslate"><span class="pre">KDEyCS.gram_matrix_mix_sum()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method._kdey.KDEyHD"><code class="docutils literal notranslate"><span class="pre">KDEyHD</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._kdey.KDEyHD.aggregate"><code class="docutils literal notranslate"><span class="pre">KDEyHD.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._kdey.KDEyHD.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">KDEyHD.aggregation_fit()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method._kdey.KDEyML"><code class="docutils literal notranslate"><span class="pre">KDEyML</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._kdey.KDEyML.aggregate"><code class="docutils literal notranslate"><span class="pre">KDEyML.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._kdey.KDEyML.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">KDEyML.aggregation_fit()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetModule"><code class="docutils literal notranslate"><span class="pre">QuaNetModule</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetModule.device"><code class="docutils literal notranslate"><span class="pre">QuaNetModule.device</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetModule.forward"><code class="docutils literal notranslate"><span class="pre">QuaNetModule.forward()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetTrainer"><code class="docutils literal notranslate"><span class="pre">QuaNetTrainer</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetTrainer.classes_"><code class="docutils literal notranslate"><span class="pre">QuaNetTrainer.classes_</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetTrainer.clean_checkpoint"><code class="docutils literal notranslate"><span class="pre">QuaNetTrainer.clean_checkpoint()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetTrainer.clean_checkpoint_dir"><code class="docutils literal notranslate"><span class="pre">QuaNetTrainer.clean_checkpoint_dir()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetTrainer.fit"><code class="docutils literal notranslate"><span class="pre">QuaNetTrainer.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetTrainer.get_params"><code class="docutils literal notranslate"><span class="pre">QuaNetTrainer.get_params()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetTrainer.quantify"><code class="docutils literal notranslate"><span class="pre">QuaNetTrainer.quantify()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetTrainer.set_params"><code class="docutils literal notranslate"><span class="pre">QuaNetTrainer.set_params()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method._neural.mae_loss"><code class="docutils literal notranslate"><span class="pre">mae_loss()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.MAX"><code class="docutils literal notranslate"><span class="pre">MAX</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.MAX.condition"><code class="docutils literal notranslate"><span class="pre">MAX.condition()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.MS"><code class="docutils literal notranslate"><span class="pre">MS</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.MS.aggregate"><code class="docutils literal notranslate"><span class="pre">MS.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.MS.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">MS.aggregation_fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.MS.condition"><code class="docutils literal notranslate"><span class="pre">MS.condition()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.MS2"><code class="docutils literal notranslate"><span class="pre">MS2</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.MS2.discard"><code class="docutils literal notranslate"><span class="pre">MS2.discard()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.T50"><code class="docutils literal notranslate"><span class="pre">T50</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.T50.condition"><code class="docutils literal notranslate"><span class="pre">T50.condition()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.ThresholdOptimization"><code class="docutils literal notranslate"><span class="pre">ThresholdOptimization</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.ThresholdOptimization.aggregate"><code class="docutils literal notranslate"><span class="pre">ThresholdOptimization.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.ThresholdOptimization.aggregate_with_threshold"><code class="docutils literal notranslate"><span class="pre">ThresholdOptimization.aggregate_with_threshold()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.ThresholdOptimization.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">ThresholdOptimization.aggregation_fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.ThresholdOptimization.condition"><code class="docutils literal notranslate"><span class="pre">ThresholdOptimization.condition()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.ThresholdOptimization.discard"><code class="docutils literal notranslate"><span class="pre">ThresholdOptimization.discard()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.X"><code class="docutils literal notranslate"><span class="pre">X</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._threshold_optim.X.condition"><code class="docutils literal notranslate"><span class="pre">X.condition()</span></code></a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l5"><a class="reference internal" href="quapy.method.html#module-quapy.method.base">quapy.method.base module</a><ul>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier"><code class="docutils literal notranslate"><span class="pre">BaseQuantifier</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier.fit"><code class="docutils literal notranslate"><span class="pre">BaseQuantifier.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier.quantify"><code class="docutils literal notranslate"><span class="pre">BaseQuantifier.quantify()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.base.BinaryQuantifier"><code class="docutils literal notranslate"><span class="pre">BinaryQuantifier</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.base.OneVsAll"><code class="docutils literal notranslate"><span class="pre">OneVsAll</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.base.OneVsAllGeneric"><code class="docutils literal notranslate"><span class="pre">OneVsAllGeneric</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.base.OneVsAllGeneric.classes_"><code class="docutils literal notranslate"><span class="pre">OneVsAllGeneric.classes_</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.base.OneVsAllGeneric.fit"><code class="docutils literal notranslate"><span class="pre">OneVsAllGeneric.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.base.OneVsAllGeneric.quantify"><code class="docutils literal notranslate"><span class="pre">OneVsAllGeneric.quantify()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.base.newOneVsAll"><code class="docutils literal notranslate"><span class="pre">newOneVsAll()</span></code></a></li>
</ul>
</li>
<li class="toctree-l5"><a class="reference internal" href="quapy.method.html#module-quapy.method.meta">quapy.method.meta module</a><ul>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.meta.EACC"><code class="docutils literal notranslate"><span class="pre">EACC()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.meta.ECC"><code class="docutils literal notranslate"><span class="pre">ECC()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.meta.EEMQ"><code class="docutils literal notranslate"><span class="pre">EEMQ()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.meta.EHDy"><code class="docutils literal notranslate"><span class="pre">EHDy()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.meta.EPACC"><code class="docutils literal notranslate"><span class="pre">EPACC()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.meta.Ensemble"><code class="docutils literal notranslate"><span class="pre">Ensemble</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.meta.Ensemble.VALID_POLICIES"><code class="docutils literal notranslate"><span class="pre">Ensemble.VALID_POLICIES</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.meta.Ensemble.aggregative"><code class="docutils literal notranslate"><span class="pre">Ensemble.aggregative</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.meta.Ensemble.fit"><code class="docutils literal notranslate"><span class="pre">Ensemble.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.meta.Ensemble.get_params"><code class="docutils literal notranslate"><span class="pre">Ensemble.get_params()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.meta.Ensemble.probabilistic"><code class="docutils literal notranslate"><span class="pre">Ensemble.probabilistic</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.meta.Ensemble.quantify"><code class="docutils literal notranslate"><span class="pre">Ensemble.quantify()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.meta.Ensemble.set_params"><code class="docutils literal notranslate"><span class="pre">Ensemble.set_params()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.meta.MedianEstimator"><code class="docutils literal notranslate"><span class="pre">MedianEstimator</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.meta.MedianEstimator.fit"><code class="docutils literal notranslate"><span class="pre">MedianEstimator.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.meta.MedianEstimator.get_params"><code class="docutils literal notranslate"><span class="pre">MedianEstimator.get_params()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.meta.MedianEstimator.quantify"><code class="docutils literal notranslate"><span class="pre">MedianEstimator.quantify()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.meta.MedianEstimator.set_params"><code class="docutils literal notranslate"><span class="pre">MedianEstimator.set_params()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.meta.MedianEstimator2"><code class="docutils literal notranslate"><span class="pre">MedianEstimator2</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.meta.MedianEstimator2.fit"><code class="docutils literal notranslate"><span class="pre">MedianEstimator2.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.meta.MedianEstimator2.get_params"><code class="docutils literal notranslate"><span class="pre">MedianEstimator2.get_params()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.meta.MedianEstimator2.quantify"><code class="docutils literal notranslate"><span class="pre">MedianEstimator2.quantify()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.meta.MedianEstimator2.set_params"><code class="docutils literal notranslate"><span class="pre">MedianEstimator2.set_params()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.meta.ensembleFactory"><code class="docutils literal notranslate"><span class="pre">ensembleFactory()</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.meta.get_probability_distribution"><code class="docutils literal notranslate"><span class="pre">get_probability_distribution()</span></code></a></li>
</ul>
</li>
<li class="toctree-l5"><a class="reference internal" href="quapy.method.html#module-quapy.method.non_aggregative">quapy.method.non_aggregative module</a><ul>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.non_aggregative.DMx"><code class="docutils literal notranslate"><span class="pre">DMx</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.non_aggregative.DMx.HDx"><code class="docutils literal notranslate"><span class="pre">DMx.HDx()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.non_aggregative.DMx.fit"><code class="docutils literal notranslate"><span class="pre">DMx.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.non_aggregative.DMx.quantify"><code class="docutils literal notranslate"><span class="pre">DMx.quantify()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.non_aggregative.DistributionMatchingX"><code class="docutils literal notranslate"><span class="pre">DistributionMatchingX</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation"><code class="docutils literal notranslate"><span class="pre">MaximumLikelihoodPrevalenceEstimation</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.fit"><code class="docutils literal notranslate"><span class="pre">MaximumLikelihoodPrevalenceEstimation.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.quantify"><code class="docutils literal notranslate"><span class="pre">MaximumLikelihoodPrevalenceEstimation.quantify()</span></code></a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l5"><a class="reference internal" href="quapy.method.html#module-quapy.method">Module contents</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#submodules">Submodules</a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.error">quapy.error module</a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.absolute_error"><code class="docutils literal notranslate"><span class="pre">absolute_error()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.acc_error"><code class="docutils literal notranslate"><span class="pre">acc_error()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.acce"><code class="docutils literal notranslate"><span class="pre">acce()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.ae"><code class="docutils literal notranslate"><span class="pre">ae()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.f1_error"><code class="docutils literal notranslate"><span class="pre">f1_error()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.f1e"><code class="docutils literal notranslate"><span class="pre">f1e()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.from_name"><code class="docutils literal notranslate"><span class="pre">from_name()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.kld"><code class="docutils literal notranslate"><span class="pre">kld()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.mae"><code class="docutils literal notranslate"><span class="pre">mae()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.mean_absolute_error"><code class="docutils literal notranslate"><span class="pre">mean_absolute_error()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.mean_normalized_absolute_error"><code class="docutils literal notranslate"><span class="pre">mean_normalized_absolute_error()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.mean_normalized_relative_absolute_error"><code class="docutils literal notranslate"><span class="pre">mean_normalized_relative_absolute_error()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.mean_relative_absolute_error"><code class="docutils literal notranslate"><span class="pre">mean_relative_absolute_error()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.mkld"><code class="docutils literal notranslate"><span class="pre">mkld()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.mnae"><code class="docutils literal notranslate"><span class="pre">mnae()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.mnkld"><code class="docutils literal notranslate"><span class="pre">mnkld()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.mnrae"><code class="docutils literal notranslate"><span class="pre">mnrae()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.mrae"><code class="docutils literal notranslate"><span class="pre">mrae()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.mse"><code class="docutils literal notranslate"><span class="pre">mse()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.nae"><code class="docutils literal notranslate"><span class="pre">nae()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.nkld"><code class="docutils literal notranslate"><span class="pre">nkld()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.normalized_absolute_error"><code class="docutils literal notranslate"><span class="pre">normalized_absolute_error()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.normalized_relative_absolute_error"><code class="docutils literal notranslate"><span class="pre">normalized_relative_absolute_error()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.nrae"><code class="docutils literal notranslate"><span class="pre">nrae()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.rae"><code class="docutils literal notranslate"><span class="pre">rae()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.relative_absolute_error"><code class="docutils literal notranslate"><span class="pre">relative_absolute_error()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.se"><code class="docutils literal notranslate"><span class="pre">se()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.error.smooth"><code class="docutils literal notranslate"><span class="pre">smooth()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.evaluation">quapy.evaluation module</a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.evaluation.evaluate"><code class="docutils literal notranslate"><span class="pre">evaluate()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.evaluation.evaluate_on_samples"><code class="docutils literal notranslate"><span class="pre">evaluate_on_samples()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.evaluation.evaluation_report"><code class="docutils literal notranslate"><span class="pre">evaluation_report()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.evaluation.prediction"><code class="docutils literal notranslate"><span class="pre">prediction()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.functional">quapy.functional module</a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.HellingerDistance"><code class="docutils literal notranslate"><span class="pre">HellingerDistance()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.TopsoeDistance"><code class="docutils literal notranslate"><span class="pre">TopsoeDistance()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.adjusted_quantification"><code class="docutils literal notranslate"><span class="pre">adjusted_quantification()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.argmin_prevalence"><code class="docutils literal notranslate"><span class="pre">argmin_prevalence()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.as_binary_prevalence"><code class="docutils literal notranslate"><span class="pre">as_binary_prevalence()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.check_prevalence_vector"><code class="docutils literal notranslate"><span class="pre">check_prevalence_vector()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.get_divergence"><code class="docutils literal notranslate"><span class="pre">get_divergence()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.get_nprevpoints_approximation"><code class="docutils literal notranslate"><span class="pre">get_nprevpoints_approximation()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.linear_search"><code class="docutils literal notranslate"><span class="pre">linear_search()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.normalize_prevalence"><code class="docutils literal notranslate"><span class="pre">normalize_prevalence()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.num_prevalence_combinations"><code class="docutils literal notranslate"><span class="pre">num_prevalence_combinations()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.optim_minimize"><code class="docutils literal notranslate"><span class="pre">optim_minimize()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_from_labels"><code class="docutils literal notranslate"><span class="pre">prevalence_from_labels()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_from_probabilities"><code class="docutils literal notranslate"><span class="pre">prevalence_from_probabilities()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_linspace"><code class="docutils literal notranslate"><span class="pre">prevalence_linspace()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.strprev"><code class="docutils literal notranslate"><span class="pre">strprev()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.uniform_prevalence_sampling"><code class="docutils literal notranslate"><span class="pre">uniform_prevalence_sampling()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.uniform_simplex_sampling"><code class="docutils literal notranslate"><span class="pre">uniform_simplex_sampling()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.model_selection">quapy.model_selection module</a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.model_selection.ConfigStatus"><code class="docutils literal notranslate"><span class="pre">ConfigStatus</span></code></a><ul>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.model_selection.ConfigStatus.failed"><code class="docutils literal notranslate"><span class="pre">ConfigStatus.failed()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.model_selection.ConfigStatus.success"><code class="docutils literal notranslate"><span class="pre">ConfigStatus.success()</span></code></a></li>
</ul>
</li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ"><code class="docutils literal notranslate"><span class="pre">GridSearchQ</span></code></a><ul>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ.best_model"><code class="docutils literal notranslate"><span class="pre">GridSearchQ.best_model()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ.fit"><code class="docutils literal notranslate"><span class="pre">GridSearchQ.fit()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ.get_params"><code class="docutils literal notranslate"><span class="pre">GridSearchQ.get_params()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ.quantify"><code class="docutils literal notranslate"><span class="pre">GridSearchQ.quantify()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ.set_params"><code class="docutils literal notranslate"><span class="pre">GridSearchQ.set_params()</span></code></a></li>
</ul>
</li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.model_selection.Status"><code class="docutils literal notranslate"><span class="pre">Status</span></code></a><ul>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.model_selection.Status.ERROR"><code class="docutils literal notranslate"><span class="pre">Status.ERROR</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.model_selection.Status.INVALID"><code class="docutils literal notranslate"><span class="pre">Status.INVALID</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.model_selection.Status.SUCCESS"><code class="docutils literal notranslate"><span class="pre">Status.SUCCESS</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.model_selection.Status.TIMEOUT"><code class="docutils literal notranslate"><span class="pre">Status.TIMEOUT</span></code></a></li>
</ul>
</li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.model_selection.cross_val_predict"><code class="docutils literal notranslate"><span class="pre">cross_val_predict()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.model_selection.expand_grid"><code class="docutils literal notranslate"><span class="pre">expand_grid()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.model_selection.group_params"><code class="docutils literal notranslate"><span class="pre">group_params()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.plot">quapy.plot module</a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.plot.binary_bias_bins"><code class="docutils literal notranslate"><span class="pre">binary_bias_bins()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.plot.binary_bias_global"><code class="docutils literal notranslate"><span class="pre">binary_bias_global()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.plot.binary_diagonal"><code class="docutils literal notranslate"><span class="pre">binary_diagonal()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.plot.brokenbar_supremacy_by_drift"><code class="docutils literal notranslate"><span class="pre">brokenbar_supremacy_by_drift()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.plot.error_by_drift"><code class="docutils literal notranslate"><span class="pre">error_by_drift()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.protocol">quapy.protocol module</a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.APP"><code class="docutils literal notranslate"><span class="pre">APP</span></code></a><ul>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.APP.prevalence_grid"><code class="docutils literal notranslate"><span class="pre">APP.prevalence_grid()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.APP.sample"><code class="docutils literal notranslate"><span class="pre">APP.sample()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.APP.samples_parameters"><code class="docutils literal notranslate"><span class="pre">APP.samples_parameters()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.APP.total"><code class="docutils literal notranslate"><span class="pre">APP.total()</span></code></a></li>
</ul>
</li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.AbstractProtocol"><code class="docutils literal notranslate"><span class="pre">AbstractProtocol</span></code></a><ul>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.AbstractProtocol.total"><code class="docutils literal notranslate"><span class="pre">AbstractProtocol.total()</span></code></a></li>
</ul>
</li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.AbstractStochasticSeededProtocol"><code class="docutils literal notranslate"><span class="pre">AbstractStochasticSeededProtocol</span></code></a><ul>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.AbstractStochasticSeededProtocol.collator"><code class="docutils literal notranslate"><span class="pre">AbstractStochasticSeededProtocol.collator()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.AbstractStochasticSeededProtocol.random_state"><code class="docutils literal notranslate"><span class="pre">AbstractStochasticSeededProtocol.random_state</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.AbstractStochasticSeededProtocol.sample"><code class="docutils literal notranslate"><span class="pre">AbstractStochasticSeededProtocol.sample()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.AbstractStochasticSeededProtocol.samples_parameters"><code class="docutils literal notranslate"><span class="pre">AbstractStochasticSeededProtocol.samples_parameters()</span></code></a></li>
</ul>
</li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.ArtificialPrevalenceProtocol"><code class="docutils literal notranslate"><span class="pre">ArtificialPrevalenceProtocol</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.DomainMixer"><code class="docutils literal notranslate"><span class="pre">DomainMixer</span></code></a><ul>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.DomainMixer.sample"><code class="docutils literal notranslate"><span class="pre">DomainMixer.sample()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.DomainMixer.samples_parameters"><code class="docutils literal notranslate"><span class="pre">DomainMixer.samples_parameters()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.DomainMixer.total"><code class="docutils literal notranslate"><span class="pre">DomainMixer.total()</span></code></a></li>
</ul>
</li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.IterateProtocol"><code class="docutils literal notranslate"><span class="pre">IterateProtocol</span></code></a><ul>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.IterateProtocol.total"><code class="docutils literal notranslate"><span class="pre">IterateProtocol.total()</span></code></a></li>
</ul>
</li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.NPP"><code class="docutils literal notranslate"><span class="pre">NPP</span></code></a><ul>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.NPP.sample"><code class="docutils literal notranslate"><span class="pre">NPP.sample()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.NPP.samples_parameters"><code class="docutils literal notranslate"><span class="pre">NPP.samples_parameters()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.NPP.total"><code class="docutils literal notranslate"><span class="pre">NPP.total()</span></code></a></li>
</ul>
</li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.NaturalPrevalenceProtocol"><code class="docutils literal notranslate"><span class="pre">NaturalPrevalenceProtocol</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.OnLabelledCollectionProtocol"><code class="docutils literal notranslate"><span class="pre">OnLabelledCollectionProtocol</span></code></a><ul>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.OnLabelledCollectionProtocol.RETURN_TYPES"><code class="docutils literal notranslate"><span class="pre">OnLabelledCollectionProtocol.RETURN_TYPES</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.OnLabelledCollectionProtocol.get_collator"><code class="docutils literal notranslate"><span class="pre">OnLabelledCollectionProtocol.get_collator()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.OnLabelledCollectionProtocol.get_labelled_collection"><code class="docutils literal notranslate"><span class="pre">OnLabelledCollectionProtocol.get_labelled_collection()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.OnLabelledCollectionProtocol.on_preclassified_instances"><code class="docutils literal notranslate"><span class="pre">OnLabelledCollectionProtocol.on_preclassified_instances()</span></code></a></li>
</ul>
</li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.UPP"><code class="docutils literal notranslate"><span class="pre">UPP</span></code></a><ul>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.UPP.sample"><code class="docutils literal notranslate"><span class="pre">UPP.sample()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.UPP.samples_parameters"><code class="docutils literal notranslate"><span class="pre">UPP.samples_parameters()</span></code></a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.html#quapy.protocol.UPP.total"><code class="docutils literal notranslate"><span class="pre">UPP.total()</span></code></a></li>
</ul>
</li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.UniformPrevalenceProtocol"><code class="docutils literal notranslate"><span class="pre">UniformPrevalenceProtocol</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.util">quapy.util module</a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.EarlyStop"><code class="docutils literal notranslate"><span class="pre">EarlyStop</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.create_if_not_exist"><code class="docutils literal notranslate"><span class="pre">create_if_not_exist()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.create_parent_dir"><code class="docutils literal notranslate"><span class="pre">create_parent_dir()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.download_file"><code class="docutils literal notranslate"><span class="pre">download_file()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.download_file_if_not_exists"><code class="docutils literal notranslate"><span class="pre">download_file_if_not_exists()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.get_quapy_home"><code class="docutils literal notranslate"><span class="pre">get_quapy_home()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.map_parallel"><code class="docutils literal notranslate"><span class="pre">map_parallel()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.parallel"><code class="docutils literal notranslate"><span class="pre">parallel()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.pickled_resource"><code class="docutils literal notranslate"><span class="pre">pickled_resource()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.save_text_file"><code class="docutils literal notranslate"><span class="pre">save_text_file()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.temp_seed"><code class="docutils literal notranslate"><span class="pre">temp_seed()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.timeout"><code class="docutils literal notranslate"><span class="pre">timeout()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy">Module contents</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules.html">API Developers documentation</a><ul>
<li class="toctree-l2"><a class="reference internal" href="quapy.html">quapy package</a></li>
</ul>
</li>
</ul>
</div>
</section>
</section>
</section>
<section id="indices-and-tables">
<h1>Indices and tables<a class="headerlink" href="#indices-and-tables" title="Permalink to this heading"></a></h1>
<h1>Indices and tables<a class="headerlink" href="#indices-and-tables" title="Link to this heading"></a></h1>
<ul class="simple">
<li><p><a class="reference internal" href="genindex.html"><span class="std std-ref">Index</span></a></p></li>
<li><p><a class="reference internal" href="py-modindex.html"><span class="std std-ref">Module Index</span></a></p></li>
@ -174,72 +682,33 @@ See the <a class="reference internal" href="Evaluation.html"><span class="doc">E
</section>
<div class="clearer"></div>
</div>
</div>
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
<a href="modules.html" class="btn btn-neutral float-right" title="quapy" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<div>
<h3><a href="#">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Welcome to QuaPys documentation!</a><ul>
<li><a class="reference internal" href="#introduction">Introduction</a><ul>
<li><a class="reference internal" href="#a-quick-example">A quick example:</a></li>
<li><a class="reference internal" href="#features">Features</a></li>
</ul>
</li>
</ul>
</li>
<li><a class="reference internal" href="#indices-and-tables">Indices and tables</a></li>
</ul>
<hr/>
<div role="contentinfo">
<p>&#169; Copyright 2024, Alejandro Moreo.</p>
</div>
<div>
<h4>Next topic</h4>
<p class="topless"><a href="Installation.html"
title="next chapter">Installation</a></p>
</div>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/index.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>document.getElementById('searchbox').style.display = "block"</script>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
<div class="clearer"></div>
</section>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="Installation.html" title="Installation"
>next</a> |</li>
<li class="nav-item nav-item-0"><a href="#">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Welcome to QuaPys documentation!</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2021, Alejandro Moreo.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 5.3.0.
</div>
</body>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>

View File

@ -1,71 +1,278 @@
<!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./">
<head>
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>quapy &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.8 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=92fd9be5" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=19f00094" />
<!doctype html>
<!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script>
<![endif]-->
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<title>quapy &#8212; QuaPy 0.1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/bizstyle.js"></script>
<script src="_static/jquery.js?v=5d32c60e"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="_static/documentation_options.js?v=22607128"></script>
<script src="_static/doctools.js?v=9a2dae69"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="quapy package" href="quapy.html" />
<link rel="prev" title="Plotting" href="Plotting.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="quapy.html" title="quapy package"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="Plotting.html" title="Plotting"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">quapy</a></li>
</ul>
</div>
<link rel="prev" title="Welcome to QuaPys documentation!" href="index.html" />
</head>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="index.html" class="icon icon-home">
QuaPy: A Python-based open-source framework for quantification
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<ul class="current">
<li class="toctree-l1 current"><a class="current reference internal" href="#">quapy</a><ul>
<li class="toctree-l2"><a class="reference internal" href="quapy.html">quapy package</a></li>
</ul>
</li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">QuaPy: A Python-based open-source framework for quantification</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item active">quapy</li>
<li class="wy-breadcrumbs-aside">
<a href="_sources/modules.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<section id="quapy">
<h1>quapy<a class="headerlink" href="#quapy" title="Permalink to this heading"></a></h1>
<h1>quapy<a class="headerlink" href="#quapy" title="Link to this heading"></a></h1>
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference internal" href="quapy.html">quapy package</a><ul>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#subpackages">Subpackages</a><ul>
<li class="toctree-l3"><a class="reference internal" href="quapy.classification.html">quapy.classification package</a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.classification.html#submodules">Submodules</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.classification.html#module-quapy.classification.calibration">quapy.classification.calibration module</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.classification.html#module-quapy.classification.methods">quapy.classification.methods module</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.classification.html#module-quapy.classification.neural">quapy.classification.neural module</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.classification.html#module-quapy.classification.svmperf">quapy.classification.svmperf module</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.classification.html#module-quapy.classification">Module contents</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.data.html">quapy.data package</a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.data.html#submodules">Submodules</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.data.html#module-quapy.data.base">quapy.data.base module</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.data.html#module-quapy.data.datasets">quapy.data.datasets module</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.data.html#module-quapy.data.preprocessing">quapy.data.preprocessing module</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.data.html#module-quapy.data.reader">quapy.data.reader module</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.data.html#module-quapy.data">Module contents</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.method.html">quapy.method package</a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.method.html#submodules">Submodules</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.method.html#module-quapy.method.aggregative">quapy.method.aggregative module</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.method.html#module-quapy.method.base">quapy.method.base module</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.method.html#module-quapy.method.meta">quapy.method.meta module</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.method.html#module-quapy.method.non_aggregative">quapy.method.non_aggregative module</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.method.html#module-quapy.method">Module contents</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#submodules">Submodules</a></li>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#module-quapy.error">quapy.error</a></li>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#module-quapy.evaluation">quapy.evaluation</a></li>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#quapy-protocol">quapy.protocol</a></li>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#module-quapy.functional">quapy.functional</a></li>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#module-quapy.model_selection">quapy.model_selection</a></li>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#module-quapy.plot">quapy.plot</a></li>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#module-quapy.util">quapy.util</a></li>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#subpackages">Subpackages</a></li>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#module-quapy.error">quapy.error module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.absolute_error"><code class="docutils literal notranslate"><span class="pre">absolute_error()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.acc_error"><code class="docutils literal notranslate"><span class="pre">acc_error()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.acce"><code class="docutils literal notranslate"><span class="pre">acce()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.ae"><code class="docutils literal notranslate"><span class="pre">ae()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.f1_error"><code class="docutils literal notranslate"><span class="pre">f1_error()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.f1e"><code class="docutils literal notranslate"><span class="pre">f1e()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.from_name"><code class="docutils literal notranslate"><span class="pre">from_name()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.kld"><code class="docutils literal notranslate"><span class="pre">kld()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.mae"><code class="docutils literal notranslate"><span class="pre">mae()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.mean_absolute_error"><code class="docutils literal notranslate"><span class="pre">mean_absolute_error()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.mean_normalized_absolute_error"><code class="docutils literal notranslate"><span class="pre">mean_normalized_absolute_error()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.mean_normalized_relative_absolute_error"><code class="docutils literal notranslate"><span class="pre">mean_normalized_relative_absolute_error()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.mean_relative_absolute_error"><code class="docutils literal notranslate"><span class="pre">mean_relative_absolute_error()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.mkld"><code class="docutils literal notranslate"><span class="pre">mkld()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.mnae"><code class="docutils literal notranslate"><span class="pre">mnae()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.mnkld"><code class="docutils literal notranslate"><span class="pre">mnkld()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.mnrae"><code class="docutils literal notranslate"><span class="pre">mnrae()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.mrae"><code class="docutils literal notranslate"><span class="pre">mrae()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.mse"><code class="docutils literal notranslate"><span class="pre">mse()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.nae"><code class="docutils literal notranslate"><span class="pre">nae()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.nkld"><code class="docutils literal notranslate"><span class="pre">nkld()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.normalized_absolute_error"><code class="docutils literal notranslate"><span class="pre">normalized_absolute_error()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.normalized_relative_absolute_error"><code class="docutils literal notranslate"><span class="pre">normalized_relative_absolute_error()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.nrae"><code class="docutils literal notranslate"><span class="pre">nrae()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.rae"><code class="docutils literal notranslate"><span class="pre">rae()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.relative_absolute_error"><code class="docutils literal notranslate"><span class="pre">relative_absolute_error()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.se"><code class="docutils literal notranslate"><span class="pre">se()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.error.smooth"><code class="docutils literal notranslate"><span class="pre">smooth()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#module-quapy.evaluation">quapy.evaluation module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.evaluation.evaluate"><code class="docutils literal notranslate"><span class="pre">evaluate()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.evaluation.evaluate_on_samples"><code class="docutils literal notranslate"><span class="pre">evaluate_on_samples()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.evaluation.evaluation_report"><code class="docutils literal notranslate"><span class="pre">evaluation_report()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.evaluation.prediction"><code class="docutils literal notranslate"><span class="pre">prediction()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#module-quapy.functional">quapy.functional module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.HellingerDistance"><code class="docutils literal notranslate"><span class="pre">HellingerDistance()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.TopsoeDistance"><code class="docutils literal notranslate"><span class="pre">TopsoeDistance()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.adjusted_quantification"><code class="docutils literal notranslate"><span class="pre">adjusted_quantification()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.argmin_prevalence"><code class="docutils literal notranslate"><span class="pre">argmin_prevalence()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.as_binary_prevalence"><code class="docutils literal notranslate"><span class="pre">as_binary_prevalence()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.check_prevalence_vector"><code class="docutils literal notranslate"><span class="pre">check_prevalence_vector()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.get_divergence"><code class="docutils literal notranslate"><span class="pre">get_divergence()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.get_nprevpoints_approximation"><code class="docutils literal notranslate"><span class="pre">get_nprevpoints_approximation()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.linear_search"><code class="docutils literal notranslate"><span class="pre">linear_search()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.normalize_prevalence"><code class="docutils literal notranslate"><span class="pre">normalize_prevalence()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.num_prevalence_combinations"><code class="docutils literal notranslate"><span class="pre">num_prevalence_combinations()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.optim_minimize"><code class="docutils literal notranslate"><span class="pre">optim_minimize()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_from_labels"><code class="docutils literal notranslate"><span class="pre">prevalence_from_labels()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_from_probabilities"><code class="docutils literal notranslate"><span class="pre">prevalence_from_probabilities()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_linspace"><code class="docutils literal notranslate"><span class="pre">prevalence_linspace()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.strprev"><code class="docutils literal notranslate"><span class="pre">strprev()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.uniform_prevalence_sampling"><code class="docutils literal notranslate"><span class="pre">uniform_prevalence_sampling()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.uniform_simplex_sampling"><code class="docutils literal notranslate"><span class="pre">uniform_simplex_sampling()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#module-quapy.model_selection">quapy.model_selection module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.model_selection.ConfigStatus"><code class="docutils literal notranslate"><span class="pre">ConfigStatus</span></code></a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.model_selection.ConfigStatus.failed"><code class="docutils literal notranslate"><span class="pre">ConfigStatus.failed()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.model_selection.ConfigStatus.success"><code class="docutils literal notranslate"><span class="pre">ConfigStatus.success()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ"><code class="docutils literal notranslate"><span class="pre">GridSearchQ</span></code></a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ.best_model"><code class="docutils literal notranslate"><span class="pre">GridSearchQ.best_model()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ.fit"><code class="docutils literal notranslate"><span class="pre">GridSearchQ.fit()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ.get_params"><code class="docutils literal notranslate"><span class="pre">GridSearchQ.get_params()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ.quantify"><code class="docutils literal notranslate"><span class="pre">GridSearchQ.quantify()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ.set_params"><code class="docutils literal notranslate"><span class="pre">GridSearchQ.set_params()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.model_selection.Status"><code class="docutils literal notranslate"><span class="pre">Status</span></code></a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.model_selection.Status.ERROR"><code class="docutils literal notranslate"><span class="pre">Status.ERROR</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.model_selection.Status.INVALID"><code class="docutils literal notranslate"><span class="pre">Status.INVALID</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.model_selection.Status.SUCCESS"><code class="docutils literal notranslate"><span class="pre">Status.SUCCESS</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.model_selection.Status.TIMEOUT"><code class="docutils literal notranslate"><span class="pre">Status.TIMEOUT</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.model_selection.cross_val_predict"><code class="docutils literal notranslate"><span class="pre">cross_val_predict()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.model_selection.expand_grid"><code class="docutils literal notranslate"><span class="pre">expand_grid()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.model_selection.group_params"><code class="docutils literal notranslate"><span class="pre">group_params()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#module-quapy.plot">quapy.plot module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.plot.binary_bias_bins"><code class="docutils literal notranslate"><span class="pre">binary_bias_bins()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.plot.binary_bias_global"><code class="docutils literal notranslate"><span class="pre">binary_bias_global()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.plot.binary_diagonal"><code class="docutils literal notranslate"><span class="pre">binary_diagonal()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.plot.brokenbar_supremacy_by_drift"><code class="docutils literal notranslate"><span class="pre">brokenbar_supremacy_by_drift()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.plot.error_by_drift"><code class="docutils literal notranslate"><span class="pre">error_by_drift()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#module-quapy.protocol">quapy.protocol module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.protocol.APP"><code class="docutils literal notranslate"><span class="pre">APP</span></code></a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.APP.prevalence_grid"><code class="docutils literal notranslate"><span class="pre">APP.prevalence_grid()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.APP.sample"><code class="docutils literal notranslate"><span class="pre">APP.sample()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.APP.samples_parameters"><code class="docutils literal notranslate"><span class="pre">APP.samples_parameters()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.APP.total"><code class="docutils literal notranslate"><span class="pre">APP.total()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.protocol.AbstractProtocol"><code class="docutils literal notranslate"><span class="pre">AbstractProtocol</span></code></a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.AbstractProtocol.total"><code class="docutils literal notranslate"><span class="pre">AbstractProtocol.total()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.protocol.AbstractStochasticSeededProtocol"><code class="docutils literal notranslate"><span class="pre">AbstractStochasticSeededProtocol</span></code></a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.AbstractStochasticSeededProtocol.collator"><code class="docutils literal notranslate"><span class="pre">AbstractStochasticSeededProtocol.collator()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.AbstractStochasticSeededProtocol.random_state"><code class="docutils literal notranslate"><span class="pre">AbstractStochasticSeededProtocol.random_state</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.AbstractStochasticSeededProtocol.sample"><code class="docutils literal notranslate"><span class="pre">AbstractStochasticSeededProtocol.sample()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.AbstractStochasticSeededProtocol.samples_parameters"><code class="docutils literal notranslate"><span class="pre">AbstractStochasticSeededProtocol.samples_parameters()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.protocol.ArtificialPrevalenceProtocol"><code class="docutils literal notranslate"><span class="pre">ArtificialPrevalenceProtocol</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.protocol.DomainMixer"><code class="docutils literal notranslate"><span class="pre">DomainMixer</span></code></a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.DomainMixer.sample"><code class="docutils literal notranslate"><span class="pre">DomainMixer.sample()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.DomainMixer.samples_parameters"><code class="docutils literal notranslate"><span class="pre">DomainMixer.samples_parameters()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.DomainMixer.total"><code class="docutils literal notranslate"><span class="pre">DomainMixer.total()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.protocol.IterateProtocol"><code class="docutils literal notranslate"><span class="pre">IterateProtocol</span></code></a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.IterateProtocol.total"><code class="docutils literal notranslate"><span class="pre">IterateProtocol.total()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.protocol.NPP"><code class="docutils literal notranslate"><span class="pre">NPP</span></code></a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.NPP.sample"><code class="docutils literal notranslate"><span class="pre">NPP.sample()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.NPP.samples_parameters"><code class="docutils literal notranslate"><span class="pre">NPP.samples_parameters()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.NPP.total"><code class="docutils literal notranslate"><span class="pre">NPP.total()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.protocol.NaturalPrevalenceProtocol"><code class="docutils literal notranslate"><span class="pre">NaturalPrevalenceProtocol</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.protocol.OnLabelledCollectionProtocol"><code class="docutils literal notranslate"><span class="pre">OnLabelledCollectionProtocol</span></code></a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.OnLabelledCollectionProtocol.RETURN_TYPES"><code class="docutils literal notranslate"><span class="pre">OnLabelledCollectionProtocol.RETURN_TYPES</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.OnLabelledCollectionProtocol.get_collator"><code class="docutils literal notranslate"><span class="pre">OnLabelledCollectionProtocol.get_collator()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.OnLabelledCollectionProtocol.get_labelled_collection"><code class="docutils literal notranslate"><span class="pre">OnLabelledCollectionProtocol.get_labelled_collection()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.OnLabelledCollectionProtocol.on_preclassified_instances"><code class="docutils literal notranslate"><span class="pre">OnLabelledCollectionProtocol.on_preclassified_instances()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.protocol.UPP"><code class="docutils literal notranslate"><span class="pre">UPP</span></code></a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.UPP.sample"><code class="docutils literal notranslate"><span class="pre">UPP.sample()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.UPP.samples_parameters"><code class="docutils literal notranslate"><span class="pre">UPP.samples_parameters()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.protocol.UPP.total"><code class="docutils literal notranslate"><span class="pre">UPP.total()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.protocol.UniformPrevalenceProtocol"><code class="docutils literal notranslate"><span class="pre">UniformPrevalenceProtocol</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#module-quapy.util">quapy.util module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.EarlyStop"><code class="docutils literal notranslate"><span class="pre">EarlyStop</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.create_if_not_exist"><code class="docutils literal notranslate"><span class="pre">create_if_not_exist()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.create_parent_dir"><code class="docutils literal notranslate"><span class="pre">create_parent_dir()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.download_file"><code class="docutils literal notranslate"><span class="pre">download_file()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.download_file_if_not_exists"><code class="docutils literal notranslate"><span class="pre">download_file_if_not_exists()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.get_quapy_home"><code class="docutils literal notranslate"><span class="pre">get_quapy_home()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.map_parallel"><code class="docutils literal notranslate"><span class="pre">map_parallel()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.parallel"><code class="docutils literal notranslate"><span class="pre">parallel()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.pickled_resource"><code class="docutils literal notranslate"><span class="pre">pickled_resource()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.save_text_file"><code class="docutils literal notranslate"><span class="pre">save_text_file()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.temp_seed"><code class="docutils literal notranslate"><span class="pre">temp_seed()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.timeout"><code class="docutils literal notranslate"><span class="pre">timeout()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="quapy.html#module-quapy">Module contents</a></li>
</ul>
</li>
@ -74,65 +281,34 @@
</section>
<div class="clearer"></div>
</div>
</div>
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
<a href="index.html" class="btn btn-neutral float-left" title="Welcome to QuaPys documentation!" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
<a href="quapy.html" class="btn btn-neutral float-right" title="quapy package" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<div>
<h4>Previous topic</h4>
<p class="topless"><a href="Plotting.html"
title="previous chapter">Plotting</a></p>
<hr/>
<div role="contentinfo">
<p>&#169; Copyright 2024, Alejandro Moreo.</p>
</div>
<div>
<h4>Next topic</h4>
<p class="topless"><a href="quapy.html"
title="next chapter">quapy package</a></p>
</div>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/modules.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>document.getElementById('searchbox').style.display = "block"</script>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
<div class="clearer"></div>
</section>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="quapy.html" title="quapy package"
>next</a> |</li>
<li class="right" >
<a href="Plotting.html" title="Plotting"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">quapy</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2021, Alejandro Moreo.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 5.3.0.
</div>
</body>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>

Binary file not shown.

View File

@ -1,50 +1,75 @@
<!doctype html>
<html lang="en">
<head>
<!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Python Module Index &#8212; QuaPy 0.1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
<title>Python Module Index &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.8 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=92fd9be5" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=19f00094" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/bizstyle.js"></script>
<!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script>
<![endif]-->
<script src="_static/jquery.js?v=5d32c60e"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="_static/documentation_options.js?v=22607128"></script>
<script src="_static/doctools.js?v=9a2dae69"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="index.html" class="icon icon-home">
QuaPy: A Python-based open-source framework for quantification
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="#" title="Python Module Index"
>modules</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Python Module Index</a></li>
</ul>
</div>
<li class="toctree-l1"><a class="reference internal" href="modules.html">quapy</a></li>
</ul>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">QuaPy: A Python-based open-source framework for quantification</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item active">Python Module Index</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Python Module Index</h1>
@ -133,6 +158,21 @@
<td>&#160;&#160;&#160;
<a href="quapy.method.html#module-quapy.method"><code class="xref">quapy.method</code></a></td><td>
<em></em></td></tr>
<tr class="cg-1">
<td></td>
<td>&#160;&#160;&#160;
<a href="quapy.method.html#module-quapy.method._kdey"><code class="xref">quapy.method._kdey</code></a></td><td>
<em></em></td></tr>
<tr class="cg-1">
<td></td>
<td>&#160;&#160;&#160;
<a href="quapy.method.html#module-quapy.method._neural"><code class="xref">quapy.method._neural</code></a></td><td>
<em></em></td></tr>
<tr class="cg-1">
<td></td>
<td>&#160;&#160;&#160;
<a href="quapy.method.html#module-quapy.method._threshold_optim"><code class="xref">quapy.method._threshold_optim</code></a></td><td>
<em></em></td></tr>
<tr class="cg-1">
<td></td>
<td>&#160;&#160;&#160;
@ -148,11 +188,6 @@
<td>&#160;&#160;&#160;
<a href="quapy.method.html#module-quapy.method.meta"><code class="xref">quapy.method.meta</code></a></td><td>
<em></em></td></tr>
<tr class="cg-1">
<td></td>
<td>&#160;&#160;&#160;
<a href="quapy.method.html#module-quapy.method.neural"><code class="xref">quapy.method.neural</code></a></td><td>
<em></em></td></tr>
<tr class="cg-1">
<td></td>
<td>&#160;&#160;&#160;
@ -181,42 +216,31 @@
</table>
<div class="clearer"></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>&#169; Copyright 2024, Alejandro Moreo.</p>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>document.getElementById('searchbox').style.display = "block"</script>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
<div class="clearer"></div>
</section>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="#" title="Python Module Index"
>modules</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Python Module Index</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2021, Alejandro Moreo.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 5.3.0.
</div>
</body>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>

View File

@ -1,72 +1,109 @@
<!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./">
<head>
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>quapy.classification package &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.8 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=92fd9be5" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=19f00094" />
<!doctype html>
<!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script>
<![endif]-->
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<title>quapy.classification package &#8212; QuaPy 0.1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/bizstyle.js"></script>
<script src="_static/jquery.js?v=5d32c60e"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="_static/documentation_options.js?v=22607128"></script>
<script src="_static/doctools.js?v=9a2dae69"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="quapy.data package" href="quapy.data.html" />
<link rel="prev" title="quapy package" href="quapy.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="quapy.data.html" title="quapy.data package"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="quapy.html" title="quapy package"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >quapy</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="quapy.html" accesskey="U">quapy package</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">quapy.classification package</a></li>
</ul>
</div>
</head>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="index.html" class="icon icon-home">
QuaPy: A Python-based open-source framework for quantification
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<ul class="current">
<li class="toctree-l1 current"><a class="reference internal" href="modules.html">quapy</a><ul class="current">
<li class="toctree-l2 current"><a class="reference internal" href="quapy.html">quapy package</a><ul class="current">
<li class="toctree-l3 current"><a class="reference internal" href="quapy.html#subpackages">Subpackages</a><ul class="current">
<li class="toctree-l4 current"><a class="current reference internal" href="#">quapy.classification package</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.data.html">quapy.data package</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.method.html">quapy.method package</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#submodules">Submodules</a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.error">quapy.error module</a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.evaluation">quapy.evaluation module</a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.functional">quapy.functional module</a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.model_selection">quapy.model_selection module</a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.plot">quapy.plot module</a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.protocol">quapy.protocol module</a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.util">quapy.util module</a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy">Module contents</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">QuaPy: A Python-based open-source framework for quantification</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item"><a href="modules.html">quapy</a></li>
<li class="breadcrumb-item"><a href="quapy.html">quapy package</a></li>
<li class="breadcrumb-item active">quapy.classification package</li>
<li class="wy-breadcrumbs-aside">
<a href="_sources/quapy.classification.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<section id="quapy-classification-package">
<h1>quapy.classification package<a class="headerlink" href="#quapy-classification-package" title="Permalink to this heading"></a></h1>
<h1>quapy.classification package<a class="headerlink" href="#quapy-classification-package" title="Link to this heading"></a></h1>
<section id="submodules">
<h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this heading"></a></h2>
<h2>Submodules<a class="headerlink" href="#submodules" title="Link to this heading"></a></h2>
</section>
<section id="quapy-classification-calibration">
<h2>quapy.classification.calibration<a class="headerlink" href="#quapy-classification-calibration" title="Permalink to this heading"></a></h2>
<div class="versionadded">
<p><span class="versionmodified added">New in version 0.1.7.</span></p>
</div>
<span class="target" id="module-quapy.classification.calibration"></span><dl class="py class">
<section id="module-quapy.classification.calibration">
<span id="quapy-classification-calibration-module"></span><h2>quapy.classification.calibration module<a class="headerlink" href="#module-quapy.classification.calibration" title="Link to this heading"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.calibration.BCTSCalibration">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">BCTSCalibration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.calibration.BCTSCalibration" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">BCTSCalibration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#BCTSCalibration"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.BCTSCalibration" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase" title="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase"><code class="xref py py-class docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase</span></code></a></p>
<p>Applies the Bias-Corrected Temperature Scaling (BCTS) calibration method from <cite>abstention.calibration</cite>, as defined in
<a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. paper</a>:</p>
@ -87,7 +124,7 @@ training set afterwards. Default value is 5.</p></li>
<dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.calibration.NBVSCalibration">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">NBVSCalibration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.calibration.NBVSCalibration" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">NBVSCalibration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#NBVSCalibration"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.NBVSCalibration" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase" title="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase"><code class="xref py py-class docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase</span></code></a></p>
<p>Applies the No-Bias Vector Scaling (NBVS) calibration method from <cite>abstention.calibration</cite>, as defined in
<a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. paper</a>:</p>
@ -108,7 +145,7 @@ training set afterwards. Default value is 5.</p></li>
<dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifier">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">RecalibratedProbabilisticClassifier</span></span><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifier" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">RecalibratedProbabilisticClassifier</span></span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifier"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifier" title="Link to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
<p>Abstract class for (re)calibration method from <cite>abstention.calibration</cite>, as defined in
<a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari, A., Kundaje, A., &amp; Shrikumar, A. (2020, November). Maximum likelihood with bias-corrected calibration
@ -117,10 +154,10 @@ is hard-to-beat at label shift adaptation. In International Conference on Machin
<dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">RecalibratedProbabilisticClassifierBase</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">calibrator</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">RecalibratedProbabilisticClassifierBase</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">calibrator</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase" title="Link to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">BaseEstimator</span></code>, <a class="reference internal" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifier" title="quapy.classification.calibration.RecalibratedProbabilisticClassifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifier</span></code></a></p>
<p>Applies a (re)calibration method from <cite>abstention.calibration</cite>, as defined in
<a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. paper</a>:</p>
<a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. paper</a>.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
@ -137,7 +174,7 @@ training set afterwards. Default value is 5.</p></li>
</dl>
<dl class="py property">
<dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.classes_">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.classes_" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.classes_" title="Link to this definition"></a></dt>
<dd><p>Returns the classes on which the classifier has been trained on</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -148,7 +185,7 @@ training set afterwards. Default value is 5.</p></li>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit">
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase.fit"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit" title="Link to this definition"></a></dt>
<dd><p>Fits the calibration for the probabilistic classifier.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -165,7 +202,7 @@ training set afterwards. Default value is 5.</p></li>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_cv">
<span class="sig-name descname"><span class="pre">fit_cv</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_cv" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">fit_cv</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase.fit_cv"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_cv" title="Link to this definition"></a></dt>
<dd><p>Fits the calibration in a cross-validation manner, i.e., it generates posterior probabilities for all
training instances via cross-validation, and then retrains the classifier on all training instances.
The posterior probabilities thus generated are used for calibrating the outputs of the classifier.</p>
@ -184,7 +221,7 @@ The posterior probabilities thus generated are used for calibrating the outputs
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_tr_val">
<span class="sig-name descname"><span class="pre">fit_tr_val</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_tr_val" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">fit_tr_val</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase.fit_tr_val"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_tr_val" title="Link to this definition"></a></dt>
<dd><p>Fits the calibration in a train/val-split manner, i.e.t, it partitions the training instances into a
training and a validation set, and then uses the training samples to learn classifier which is then used
to generate posterior probabilities for the held-out validation data. These posteriors are used to calibrate
@ -204,7 +241,7 @@ the classifier. The classifier is not retrained on the whole dataset.</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict">
<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase.predict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict" title="Link to this definition"></a></dt>
<dd><p>Predicts class labels for the data instances in <cite>X</cite></p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -218,7 +255,7 @@ the classifier. The classifier is not retrained on the whole dataset.</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict_proba">
<span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict_proba" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase.predict_proba"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict_proba" title="Link to this definition"></a></dt>
<dd><p>Generates posterior probabilities for the data instances in <cite>X</cite></p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -234,7 +271,7 @@ the classifier. The classifier is not retrained on the whole dataset.</p>
<dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.calibration.TSCalibration">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">TSCalibration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.calibration.TSCalibration" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">TSCalibration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#TSCalibration"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.TSCalibration" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase" title="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase"><code class="xref py py-class docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase</span></code></a></p>
<p>Applies the Temperature Scaling (TS) calibration method from <cite>abstention.calibration</cite>, as defined in
<a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. paper</a>:</p>
@ -255,7 +292,7 @@ training set afterwards. Default value is 5.</p></li>
<dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.calibration.VSCalibration">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">VSCalibration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.calibration.VSCalibration" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">VSCalibration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#VSCalibration"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.VSCalibration" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase" title="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase"><code class="xref py py-class docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase</span></code></a></p>
<p>Applies the Vector Scaling (VS) calibration method from <cite>abstention.calibration</cite>, as defined in
<a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. paper</a>:</p>
@ -276,10 +313,10 @@ training set afterwards. Default value is 5.</p></li>
</section>
<section id="module-quapy.classification.methods">
<span id="quapy-classification-methods"></span><h2>quapy.classification.methods<a class="headerlink" href="#module-quapy.classification.methods" title="Permalink to this heading"></a></h2>
<span id="quapy-classification-methods-module"></span><h2>quapy.classification.methods module<a class="headerlink" href="#module-quapy.classification.methods" title="Link to this heading"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.methods.</span></span><span class="sig-name descname"><span class="pre">LowRankLogisticRegression</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">n_components</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.methods.</span></span><span class="sig-name descname"><span class="pre">LowRankLogisticRegression</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">n_components</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression" title="Link to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">BaseEstimator</span></code></p>
<p>An example of a classification method (i.e., an object that implements <cite>fit</cite>, <cite>predict</cite>, and <cite>predict_proba</cite>)
that also generates embedded inputs (i.e., that implements <cite>transform</cite>), as those required for
@ -298,7 +335,7 @@ while classification is performed using <code class="xref py py-class docutils l
</dl>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.fit">
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.fit" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.fit"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.fit" title="Link to this definition"></a></dt>
<dd><p>Fit the model according to the given training data. The fit consists of
fitting <cite>TruncatedSVD</cite> and then <cite>LogisticRegression</cite> on the low-rank representation.</p>
<dl class="field-list simple">
@ -316,21 +353,18 @@ fitting <cite>TruncatedSVD</cite> and then <cite>LogisticRegression</cite> on th
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.get_params">
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">deep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.get_params" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.get_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.get_params" title="Link to this definition"></a></dt>
<dd><p>Get hyper-parameters for this estimator.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>deep</strong> compatibility with sklearn</p>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>a dictionary with parameter names mapped to their values</p>
<dt class="field-odd">Returns<span class="colon">:</span></dt>
<dd class="field-odd"><p>a dictionary with parameter names mapped to their values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.predict">
<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.predict" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.predict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.predict" title="Link to this definition"></a></dt>
<dd><p>Predicts labels for the instances <cite>X</cite> embedded into the low-rank space.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -345,7 +379,7 @@ instances in <cite>X</cite></p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.predict_proba">
<span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.predict_proba" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.predict_proba"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.predict_proba" title="Link to this definition"></a></dt>
<dd><p>Predicts posterior probabilities for the instances <cite>X</cite> embedded into the low-rank space.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -359,7 +393,7 @@ instances in <cite>X</cite></p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.set_params">
<span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">params</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.set_params" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">params</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.set_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.set_params" title="Link to this definition"></a></dt>
<dd><p>Set the parameters of this estimator.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -372,7 +406,7 @@ and eventually also <cite>n_components</cite> for <cite>TruncatedSVD</cite></p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.transform">
<span class="sig-name descname"><span class="pre">transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.transform" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.transform" title="Link to this definition"></a></dt>
<dd><p>Returns the low-rank approximation of <cite>X</cite> with <cite>n_components</cite> dimensions, or <cite>X</cite> unaltered if
<cite>n_components</cite> &gt;= <cite>X.shape[1]</cite>.</p>
<dl class="field-list simple">
@ -389,10 +423,10 @@ and eventually also <cite>n_components</cite> for <cite>TruncatedSVD</cite></p>
</section>
<section id="module-quapy.classification.neural">
<span id="quapy-classification-neural"></span><h2>quapy.classification.neural<a class="headerlink" href="#module-quapy.classification.neural" title="Permalink to this heading"></a></h2>
<span id="quapy-classification-neural-module"></span><h2>quapy.classification.neural module<a class="headerlink" href="#module-quapy.classification.neural" title="Link to this heading"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.neural.CNNnet">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">CNNnet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vocabulary_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_classes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">embedding_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">hidden_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">256</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repr_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">kernel_heights</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[3,</span> <span class="pre">5,</span> <span class="pre">7]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">stride</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">padding</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">drop_p</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.5</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.CNNnet" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">CNNnet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vocabulary_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_classes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">embedding_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">hidden_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">256</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repr_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">kernel_heights</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[3,</span> <span class="pre">5,</span> <span class="pre">7]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">stride</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">padding</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">drop_p</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.5</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#CNNnet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.CNNnet" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#quapy.classification.neural.TextClassifierNet" title="quapy.classification.neural.TextClassifierNet"><code class="xref py py-class docutils literal notranslate"><span class="pre">TextClassifierNet</span></code></a></p>
<p>An implementation of <a class="reference internal" href="#quapy.classification.neural.TextClassifierNet" title="quapy.classification.neural.TextClassifierNet"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.classification.neural.TextClassifierNet</span></code></a> based on
Convolutional Neural Networks.</p>
@ -414,7 +448,7 @@ consecutive tokens that each kernel covers</p></li>
</dl>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.CNNnet.document_embedding">
<span class="sig-name descname"><span class="pre">document_embedding</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.CNNnet.document_embedding" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">document_embedding</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#CNNnet.document_embedding"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.CNNnet.document_embedding" title="Link to this definition"></a></dt>
<dd><p>Embeds documents (i.e., performs the forward pass up to the
next-to-last layer).</p>
<dl class="field-list simple">
@ -432,7 +466,7 @@ dimensionality of the embedding</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.CNNnet.get_params">
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.CNNnet.get_params" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#CNNnet.get_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.CNNnet.get_params" title="Link to this definition"></a></dt>
<dd><p>Get hyper-parameters for this estimator</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -441,14 +475,9 @@ dimensionality of the embedding</p>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="quapy.classification.neural.CNNnet.training">
<span class="sig-name descname"><span class="pre">training</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="pre">bool</span></em><a class="headerlink" href="#quapy.classification.neural.CNNnet.training" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py property">
<dt class="sig sig-object py" id="quapy.classification.neural.CNNnet.vocabulary_size">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">vocabulary_size</span></span><a class="headerlink" href="#quapy.classification.neural.CNNnet.vocabulary_size" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">vocabulary_size</span></span><a class="headerlink" href="#quapy.classification.neural.CNNnet.vocabulary_size" title="Link to this definition"></a></dt>
<dd><p>Return the size of the vocabulary</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -461,7 +490,7 @@ dimensionality of the embedding</p>
<dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.neural.LSTMnet">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">LSTMnet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vocabulary_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_classes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">embedding_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">hidden_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">256</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repr_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lstm_class_nlayers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">drop_p</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.5</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.LSTMnet" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">LSTMnet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vocabulary_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_classes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">embedding_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">hidden_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">256</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repr_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lstm_class_nlayers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">drop_p</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.5</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#LSTMnet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.LSTMnet" title="Link to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#quapy.classification.neural.TextClassifierNet" title="quapy.classification.neural.TextClassifierNet"><code class="xref py py-class docutils literal notranslate"><span class="pre">TextClassifierNet</span></code></a></p>
<p>An implementation of <a class="reference internal" href="#quapy.classification.neural.TextClassifierNet" title="quapy.classification.neural.TextClassifierNet"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.classification.neural.TextClassifierNet</span></code></a> based on
Long Short Term Memory networks.</p>
@ -480,7 +509,7 @@ Long Short Term Memory networks.</p>
</dl>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.LSTMnet.document_embedding">
<span class="sig-name descname"><span class="pre">document_embedding</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.LSTMnet.document_embedding" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">document_embedding</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#LSTMnet.document_embedding"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.LSTMnet.document_embedding" title="Link to this definition"></a></dt>
<dd><p>Embeds documents (i.e., performs the forward pass up to the
next-to-last layer).</p>
<dl class="field-list simple">
@ -498,7 +527,7 @@ dimensionality of the embedding</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.LSTMnet.get_params">
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.LSTMnet.get_params" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#LSTMnet.get_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.LSTMnet.get_params" title="Link to this definition"></a></dt>
<dd><p>Get hyper-parameters for this estimator</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -507,14 +536,9 @@ dimensionality of the embedding</p>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="quapy.classification.neural.LSTMnet.training">
<span class="sig-name descname"><span class="pre">training</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="pre">bool</span></em><a class="headerlink" href="#quapy.classification.neural.LSTMnet.training" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py property">
<dt class="sig sig-object py" id="quapy.classification.neural.LSTMnet.vocabulary_size">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">vocabulary_size</span></span><a class="headerlink" href="#quapy.classification.neural.LSTMnet.vocabulary_size" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">vocabulary_size</span></span><a class="headerlink" href="#quapy.classification.neural.LSTMnet.vocabulary_size" title="Link to this definition"></a></dt>
<dd><p>Return the size of the vocabulary</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -527,7 +551,7 @@ dimensionality of the embedding</p>
<dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">NeuralClassifierTrainer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">net</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.classification.neural.TextClassifierNet" title="quapy.classification.neural.TextClassifierNet"><span class="pre">TextClassifierNet</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">lr</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.001</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">weight_decay</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">patience</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">epochs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">200</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">64</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size_test</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">512</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">padding_length</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">300</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'cuda'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">checkpointpath</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'../checkpoint/classifier_net.dat'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">NeuralClassifierTrainer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">net</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.classification.neural.TextClassifierNet" title="quapy.classification.neural.TextClassifierNet"><span class="pre">TextClassifierNet</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">lr</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.001</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">weight_decay</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">patience</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">epochs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">200</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">64</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size_test</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">512</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">padding_length</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">300</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'cuda'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">checkpointpath</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'../checkpoint/classifier_net.dat'</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer" title="Link to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
<p>Trains a neural network for text classification.</p>
<dl class="field-list simple">
@ -550,7 +574,7 @@ according to the evaluation in the held-out validation split (default ../chec
</dl>
<dl class="py property">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.device">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">device</span></span><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.device" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">device</span></span><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.device" title="Link to this definition"></a></dt>
<dd><p>Gets the device in which the network is allocated</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -561,7 +585,7 @@ according to the evaluation in the held-out validation split (default ../chec
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.fit">
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.3</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.fit" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.3</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.fit"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.fit" title="Link to this definition"></a></dt>
<dd><p>Fits the model according to the given training data.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -579,7 +603,7 @@ according to the evaluation in the held-out validation split (default ../chec
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.get_params">
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.get_params" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.get_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.get_params" title="Link to this definition"></a></dt>
<dd><p>Get hyper-parameters for this estimator</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -590,7 +614,7 @@ according to the evaluation in the held-out validation split (default ../chec
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.predict">
<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.predict" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.predict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.predict" title="Link to this definition"></a></dt>
<dd><p>Predicts labels for the instances</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -605,7 +629,7 @@ instances in <cite>X</cite></p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.predict_proba">
<span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.predict_proba" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.predict_proba"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.predict_proba" title="Link to this definition"></a></dt>
<dd><p>Predicts posterior probabilities for the instances</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -619,7 +643,7 @@ instances in <cite>X</cite></p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.reset_net_params">
<span class="sig-name descname"><span class="pre">reset_net_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vocab_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_classes</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.reset_net_params" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">reset_net_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vocab_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_classes</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.reset_net_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.reset_net_params" title="Link to this definition"></a></dt>
<dd><p>Reinitialize the network parameters</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -633,7 +657,7 @@ instances in <cite>X</cite></p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.set_params">
<span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">params</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.set_params" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">params</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.set_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.set_params" title="Link to this definition"></a></dt>
<dd><p>Set the parameters of this trainer and the learner it is training.
In this current version, parameter names for the trainer and learner should
be disjoint.</p>
@ -646,7 +670,7 @@ be disjoint.</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.transform">
<span class="sig-name descname"><span class="pre">transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.transform" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.transform" title="Link to this definition"></a></dt>
<dd><p>Returns the embeddings of the instances</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -663,12 +687,12 @@ where <cite>embed_size</cite> is defined by the classification network</p>
<dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">TextClassifierNet</span></span><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">TextClassifierNet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet" title="Link to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Module</span></code></p>
<p>Abstract Text classifier (<cite>torch.nn.Module</cite>)</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.dimensions">
<span class="sig-name descname"><span class="pre">dimensions</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.dimensions" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">dimensions</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.dimensions"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.dimensions" title="Link to this definition"></a></dt>
<dd><p>Gets the number of dimensions of the embedding space</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -679,7 +703,7 @@ where <cite>embed_size</cite> is defined by the classification network</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.document_embedding">
<em class="property"><span class="pre">abstract</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">document_embedding</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.document_embedding" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">abstract</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">document_embedding</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.document_embedding"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.document_embedding" title="Link to this definition"></a></dt>
<dd><p>Embeds documents (i.e., performs the forward pass up to the
next-to-last layer).</p>
<dl class="field-list simple">
@ -697,7 +721,7 @@ dimensionality of the embedding</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.forward">
<span class="sig-name descname"><span class="pre">forward</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.forward" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">forward</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.forward"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.forward" title="Link to this definition"></a></dt>
<dd><p>Performs the forward pass.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -713,7 +737,7 @@ for each of the instances and classes</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.get_params">
<em class="property"><span class="pre">abstract</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.get_params" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">abstract</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.get_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.get_params" title="Link to this definition"></a></dt>
<dd><p>Get hyper-parameters for this estimator</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -724,7 +748,7 @@ for each of the instances and classes</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.predict_proba">
<span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.predict_proba" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.predict_proba"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.predict_proba" title="Link to this definition"></a></dt>
<dd><p>Predicts posterior probabilities for the instances in <cite>x</cite></p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -738,14 +762,9 @@ is length of the pad in the batch</p>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.training">
<span class="sig-name descname"><span class="pre">training</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="pre">bool</span></em><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.training" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py property">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.vocabulary_size">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">vocabulary_size</span></span><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.vocabulary_size" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">vocabulary_size</span></span><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.vocabulary_size" title="Link to this definition"></a></dt>
<dd><p>Return the size of the vocabulary</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -756,7 +775,7 @@ is length of the pad in the batch</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.xavier_uniform">
<span class="sig-name descname"><span class="pre">xavier_uniform</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.xavier_uniform" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">xavier_uniform</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.xavier_uniform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.xavier_uniform" title="Link to this definition"></a></dt>
<dd><p>Performs Xavier initialization of the network parameters</p>
</dd></dl>
@ -764,7 +783,7 @@ is length of the pad in the batch</p>
<dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.neural.TorchDataset">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">TorchDataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.TorchDataset" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">TorchDataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TorchDataset"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TorchDataset" title="Link to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Dataset</span></code></p>
<p>Transforms labelled instances into a Torchs <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.utils.data.DataLoader</span></code> object</p>
<dl class="field-list simple">
@ -777,7 +796,7 @@ is length of the pad in the batch</p>
</dl>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.TorchDataset.asDataloader">
<span class="sig-name descname"><span class="pre">asDataloader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">batch_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shuffle</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pad_length</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.neural.TorchDataset.asDataloader" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">asDataloader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">batch_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shuffle</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pad_length</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TorchDataset.asDataloader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TorchDataset.asDataloader" title="Link to this definition"></a></dt>
<dd><p>Converts the labelled collection into a Torch DataLoader with dynamic padding for
the batch</p>
<dl class="field-list simple">
@ -801,22 +820,20 @@ applied, meaning that if the longest document in the batch is shorter than
</section>
<section id="module-quapy.classification.svmperf">
<span id="quapy-classification-svmperf"></span><h2>quapy.classification.svmperf<a class="headerlink" href="#module-quapy.classification.svmperf" title="Permalink to this heading"></a></h2>
<span id="quapy-classification-svmperf-module"></span><h2>quapy.classification.svmperf module<a class="headerlink" href="#module-quapy.classification.svmperf" title="Link to this heading"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.svmperf.SVMperf">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.svmperf.</span></span><span class="sig-name descname"><span class="pre">SVMperf</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">svmperf_base</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">C</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.01</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">loss</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'01'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">host_folder</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.svmperf.SVMperf" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.svmperf.</span></span><span class="sig-name descname"><span class="pre">SVMperf</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">svmperf_base</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">C</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.01</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">loss</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'01'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">host_folder</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/svmperf.html#SVMperf"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.svmperf.SVMperf" title="Link to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">BaseEstimator</span></code>, <code class="xref py py-class docutils literal notranslate"><span class="pre">ClassifierMixin</span></code></p>
<p>A wrapper for the <a class="reference external" href="https://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html">SVM-perf package</a> by Thorsten Joachims.
When using losses for quantification, the source code has to be patched. See
the <a class="reference external" href="https://hlt-isti.github.io/QuaPy/build/html/Installation.html#svm-perf-with-quantification-oriented-losses">installation documentation</a>
for further details.</p>
<p>References:</p>
<blockquote>
<div><ul class="simple">
<p class="rubric">References</p>
<ul class="simple">
<li><p><a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/2700406?casa_token=8D2fHsGCVn0AAAAA:ZfThYOvrzWxMGfZYlQW_y8Cagg-o_l6X_PcF09mdETQ4Tu7jK98mxFbGSXp9ZSO14JkUIYuDGFG0">Esuli et al.2015</a></p></li>
<li><p><a class="reference external" href="https://www.sciencedirect.com/science/article/abs/pii/S003132031400291X">Barranquero et al.2015</a></p></li>
</ul>
</div></blockquote>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
@ -831,7 +848,7 @@ for further details.</p>
</dl>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.svmperf.SVMperf.decision_function">
<span class="sig-name descname"><span class="pre">decision_function</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.svmperf.SVMperf.decision_function" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">decision_function</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/svmperf.html#SVMperf.decision_function"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.svmperf.SVMperf.decision_function" title="Link to this definition"></a></dt>
<dd><p>Evaluate the decision function for the samples in <cite>X</cite>.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -848,7 +865,7 @@ for further details.</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.svmperf.SVMperf.fit">
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.svmperf.SVMperf.fit" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/svmperf.html#SVMperf.fit"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.svmperf.SVMperf.fit" title="Link to this definition"></a></dt>
<dd><p>Trains the SVM for the multivariate performance loss</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -865,7 +882,7 @@ for further details.</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.svmperf.SVMperf.predict">
<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.svmperf.SVMperf.predict" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/svmperf.html#SVMperf.predict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.svmperf.SVMperf.predict" title="Link to this definition"></a></dt>
<dd><p>Predicts labels for the instances <cite>X</cite></p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -880,94 +897,46 @@ instances in <cite>X</cite></p>
<dl class="py attribute">
<dt class="sig sig-object py" id="quapy.classification.svmperf.SVMperf.valid_losses">
<span class="sig-name descname"><span class="pre">valid_losses</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">{'01':</span> <span class="pre">0,</span> <span class="pre">'f1':</span> <span class="pre">1,</span> <span class="pre">'kld':</span> <span class="pre">12,</span> <span class="pre">'mae':</span> <span class="pre">26,</span> <span class="pre">'mrae':</span> <span class="pre">27,</span> <span class="pre">'nkld':</span> <span class="pre">13,</span> <span class="pre">'q':</span> <span class="pre">22,</span> <span class="pre">'qacc':</span> <span class="pre">23,</span> <span class="pre">'qf1':</span> <span class="pre">24,</span> <span class="pre">'qgm':</span> <span class="pre">25}</span></em><a class="headerlink" href="#quapy.classification.svmperf.SVMperf.valid_losses" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">valid_losses</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">{'01':</span> <span class="pre">0,</span> <span class="pre">'f1':</span> <span class="pre">1,</span> <span class="pre">'kld':</span> <span class="pre">12,</span> <span class="pre">'mae':</span> <span class="pre">26,</span> <span class="pre">'mrae':</span> <span class="pre">27,</span> <span class="pre">'nkld':</span> <span class="pre">13,</span> <span class="pre">'q':</span> <span class="pre">22,</span> <span class="pre">'qacc':</span> <span class="pre">23,</span> <span class="pre">'qf1':</span> <span class="pre">24,</span> <span class="pre">'qgm':</span> <span class="pre">25}</span></em><a class="headerlink" href="#quapy.classification.svmperf.SVMperf.valid_losses" title="Link to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
</section>
<section id="module-quapy.classification">
<span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-quapy.classification" title="Permalink to this heading"></a></h2>
<span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-quapy.classification" title="Link to this heading"></a></h2>
</section>
</section>
<div class="clearer"></div>
</div>
</div>
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
<a href="quapy.html" class="btn btn-neutral float-left" title="quapy package" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
<a href="quapy.data.html" class="btn btn-neutral float-right" title="quapy.data package" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<div>
<h3><a href="index.html">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">quapy.classification package</a><ul>
<li><a class="reference internal" href="#submodules">Submodules</a></li>
<li><a class="reference internal" href="#quapy-classification-calibration">quapy.classification.calibration</a></li>
<li><a class="reference internal" href="#module-quapy.classification.methods">quapy.classification.methods</a></li>
<li><a class="reference internal" href="#module-quapy.classification.neural">quapy.classification.neural</a></li>
<li><a class="reference internal" href="#module-quapy.classification.svmperf">quapy.classification.svmperf</a></li>
<li><a class="reference internal" href="#module-quapy.classification">Module contents</a></li>
</ul>
</li>
</ul>
<hr/>
<div role="contentinfo">
<p>&#169; Copyright 2024, Alejandro Moreo.</p>
</div>
<div>
<h4>Previous topic</h4>
<p class="topless"><a href="quapy.html"
title="previous chapter">quapy package</a></p>
</div>
<div>
<h4>Next topic</h4>
<p class="topless"><a href="quapy.data.html"
title="next chapter">quapy.data package</a></p>
</div>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/quapy.classification.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>document.getElementById('searchbox').style.display = "block"</script>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
<div class="clearer"></div>
</section>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="quapy.data.html" title="quapy.data package"
>next</a> |</li>
<li class="right" >
<a href="quapy.html" title="quapy package"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >quapy</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="quapy.html" >quapy package</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">quapy.classification package</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2021, Alejandro Moreo.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 5.3.0.
</div>
</body>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>

View File

@ -1,69 +1,109 @@
<!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./">
<head>
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>quapy.data package &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.8 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=92fd9be5" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=19f00094" />
<!doctype html>
<!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script>
<![endif]-->
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<title>quapy.data package &#8212; QuaPy 0.1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/bizstyle.js"></script>
<script src="_static/jquery.js?v=5d32c60e"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="_static/documentation_options.js?v=22607128"></script>
<script src="_static/doctools.js?v=9a2dae69"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="quapy.method package" href="quapy.method.html" />
<link rel="prev" title="quapy.classification package" href="quapy.classification.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="quapy.method.html" title="quapy.method package"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="quapy.classification.html" title="quapy.classification package"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >quapy</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="quapy.html" accesskey="U">quapy package</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">quapy.data package</a></li>
</ul>
</div>
</head>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="index.html" class="icon icon-home">
QuaPy: A Python-based open-source framework for quantification
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<ul class="current">
<li class="toctree-l1 current"><a class="reference internal" href="modules.html">quapy</a><ul class="current">
<li class="toctree-l2 current"><a class="reference internal" href="quapy.html">quapy package</a><ul class="current">
<li class="toctree-l3 current"><a class="reference internal" href="quapy.html#subpackages">Subpackages</a><ul class="current">
<li class="toctree-l4"><a class="reference internal" href="quapy.classification.html">quapy.classification package</a></li>
<li class="toctree-l4 current"><a class="current reference internal" href="#">quapy.data package</a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.method.html">quapy.method package</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#submodules">Submodules</a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.error">quapy.error module</a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.evaluation">quapy.evaluation module</a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.functional">quapy.functional module</a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.model_selection">quapy.model_selection module</a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.plot">quapy.plot module</a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.protocol">quapy.protocol module</a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.util">quapy.util module</a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy">Module contents</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">QuaPy: A Python-based open-source framework for quantification</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item"><a href="modules.html">quapy</a></li>
<li class="breadcrumb-item"><a href="quapy.html">quapy package</a></li>
<li class="breadcrumb-item active">quapy.data package</li>
<li class="wy-breadcrumbs-aside">
<a href="_sources/quapy.data.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<section id="quapy-data-package">
<h1>quapy.data package<a class="headerlink" href="#quapy-data-package" title="Permalink to this heading"></a></h1>
<h1>quapy.data package<a class="headerlink" href="#quapy-data-package" title="Link to this heading"></a></h1>
<section id="submodules">
<h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this heading"></a></h2>
<h2>Submodules<a class="headerlink" href="#submodules" title="Link to this heading"></a></h2>
</section>
<section id="module-quapy.data.base">
<span id="quapy-data-base"></span><h2>quapy.data.base<a class="headerlink" href="#module-quapy.data.base" title="Permalink to this heading"></a></h2>
<span id="quapy-data-base-module"></span><h2>quapy.data.base module<a class="headerlink" href="#module-quapy.data.base" title="Link to this heading"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="quapy.data.base.Dataset">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.data.base.</span></span><span class="sig-name descname"><span class="pre">Dataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">training</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">vocabulary</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">dict</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.Dataset" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.data.base.</span></span><span class="sig-name descname"><span class="pre">Dataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">training</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">vocabulary</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">dict</span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><span class="pre">None</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset" title="Link to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
<p>Abstraction of training and test <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> objects.</p>
<dl class="field-list simple">
@ -78,7 +118,7 @@
</dl>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.SplitStratified">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">SplitStratified</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">collection</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">train_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.6</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.Dataset.SplitStratified" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">SplitStratified</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">collection</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">train_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.6</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset.SplitStratified"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset.SplitStratified" title="Link to this definition"></a></dt>
<dd><p>Generates a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">Dataset</span></code></a> from a stratified split of a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> instance.
See <a class="reference internal" href="#quapy.data.base.LabelledCollection.split_stratified" title="quapy.data.base.LabelledCollection.split_stratified"><code class="xref py py-meth docutils literal notranslate"><span class="pre">LabelledCollection.split_stratified()</span></code></a></p>
<dl class="field-list simple">
@ -96,7 +136,7 @@ See <a class="reference internal" href="#quapy.data.base.LabelledCollection.spli
<dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.binary">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">binary</span></span><a class="headerlink" href="#quapy.data.base.Dataset.binary" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">binary</span></span><a class="headerlink" href="#quapy.data.base.Dataset.binary" title="Link to this definition"></a></dt>
<dd><p>Returns True if the training collection is labelled according to two classes</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -107,7 +147,7 @@ See <a class="reference internal" href="#quapy.data.base.LabelledCollection.spli
<dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.classes_">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.data.base.Dataset.classes_" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.data.base.Dataset.classes_" title="Link to this definition"></a></dt>
<dd><p>The classes according to which the training collection is labelled</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -118,7 +158,7 @@ See <a class="reference internal" href="#quapy.data.base.LabelledCollection.spli
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.kFCV">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">kFCV</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">nfolds</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nrepeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.Dataset.kFCV" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">kFCV</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">nfolds</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nrepeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset.kFCV"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset.kFCV" title="Link to this definition"></a></dt>
<dd><p>Generator of stratified folds to be used in k-fold cross validation. This function is only a wrapper around
<a class="reference internal" href="#quapy.data.base.LabelledCollection.kFCV" title="quapy.data.base.LabelledCollection.kFCV"><code class="xref py py-meth docutils literal notranslate"><span class="pre">LabelledCollection.kFCV()</span></code></a> that returns <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">Dataset</span></code></a> instances made of training and test folds.</p>
<dl class="field-list simple">
@ -137,7 +177,7 @@ See <a class="reference internal" href="#quapy.data.base.LabelledCollection.spli
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.load">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">load</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">train_path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">test_path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">loader_func</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">callable</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">classes</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">loader_kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.Dataset.load" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">load</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">train_path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">test_path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">loader_func</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">callable</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">classes</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">loader_kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset.load"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset.load" title="Link to this definition"></a></dt>
<dd><p>Loads a training and a test labelled set of data and convert it into a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">Dataset</span></code></a> instance.
The function in charge of reading the instances must be specified. This function can be a custom one, or any of
the reading functions defined in <a class="reference internal" href="#module-quapy.data.reader" title="quapy.data.reader"><code class="xref py py-mod docutils literal notranslate"><span class="pre">quapy.data.reader</span></code></a> module.</p>
@ -161,7 +201,7 @@ See <a class="reference internal" href="#quapy.data.base.LabelledCollection.load
<dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.n_classes">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">n_classes</span></span><a class="headerlink" href="#quapy.data.base.Dataset.n_classes" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">n_classes</span></span><a class="headerlink" href="#quapy.data.base.Dataset.n_classes" title="Link to this definition"></a></dt>
<dd><p>The number of classes according to which the training collection is labelled</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -172,7 +212,7 @@ See <a class="reference internal" href="#quapy.data.base.LabelledCollection.load
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.reduce">
<span class="sig-name descname"><span class="pre">reduce</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">n_train</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_test</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.Dataset.reduce" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">reduce</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">n_train</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_test</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset.reduce"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset.reduce" title="Link to this definition"></a></dt>
<dd><p>Reduce the number of instances in place for quick experiments. Preserves the prevalence of each set.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -189,7 +229,7 @@ See <a class="reference internal" href="#quapy.data.base.LabelledCollection.load
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.stats">
<span class="sig-name descname"><span class="pre">stats</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">show</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.Dataset.stats" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">stats</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">show</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset.stats"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset.stats" title="Link to this definition"></a></dt>
<dd><p>Returns (and eventually prints) a dictionary with some stats of this dataset. E.g.,:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">data</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_reviews</span><span class="p">(</span><span class="s1">&#39;kindle&#39;</span><span class="p">,</span> <span class="n">tfidf</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">min_df</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">data</span><span class="o">.</span><span class="n">stats</span><span class="p">()</span>
@ -212,7 +252,7 @@ the collection), <cite>prevs</cite> (the prevalence values for each class)</p>
<dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.train_test">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">train_test</span></span><a class="headerlink" href="#quapy.data.base.Dataset.train_test" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">train_test</span></span><a class="headerlink" href="#quapy.data.base.Dataset.train_test" title="Link to this definition"></a></dt>
<dd><p>Alias to <cite>self.training</cite> and <cite>self.test</cite></p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -226,7 +266,7 @@ the collection), <cite>prevs</cite> (the prevalence values for each class)</p>
<dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.vocabulary_size">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">vocabulary_size</span></span><a class="headerlink" href="#quapy.data.base.Dataset.vocabulary_size" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">vocabulary_size</span></span><a class="headerlink" href="#quapy.data.base.Dataset.vocabulary_size" title="Link to this definition"></a></dt>
<dd><p>If the dataset is textual, and the vocabulary was indicated, returns the size of the vocabulary</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -239,7 +279,7 @@ the collection), <cite>prevs</cite> (the prevalence values for each class)</p>
<dl class="py class">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.data.base.</span></span><span class="sig-name descname"><span class="pre">LabelledCollection</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">classes</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.data.base.</span></span><span class="sig-name descname"><span class="pre">LabelledCollection</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">classes</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection" title="Link to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
<p>A LabelledCollection is a set of objects each with a label attached to each of them.
This class implements several sampling routines and other utilities.</p>
@ -256,7 +296,7 @@ from the labels. The classes must be indicated in cases in which some of the lab
</dl>
<dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.X">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">X</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.X" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">X</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.X" title="Link to this definition"></a></dt>
<dd><p>An alias to self.instances</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -267,7 +307,7 @@ from the labels. The classes must be indicated in cases in which some of the lab
<dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.Xp">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">Xp</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.Xp" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">Xp</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.Xp" title="Link to this definition"></a></dt>
<dd><p>Gets the instances and the true prevalence. This is useful when implementing evaluation protocols from
a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> object.</p>
<dl class="field-list simple">
@ -279,7 +319,7 @@ a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title
<dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.Xy">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">Xy</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.Xy" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">Xy</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.Xy" title="Link to this definition"></a></dt>
<dd><p>Gets the instances and labels. This is useful when working with <cite>sklearn</cite> estimators, e.g.:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">svm</span> <span class="o">=</span> <span class="n">LinearSVC</span><span class="p">()</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="o">*</span><span class="n">my_collection</span><span class="o">.</span><span class="n">Xy</span><span class="p">)</span>
</pre></div>
@ -293,7 +333,7 @@ a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title
<dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.binary">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">binary</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.binary" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">binary</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.binary" title="Link to this definition"></a></dt>
<dd><p>Returns True if the number of classes is 2</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -304,7 +344,7 @@ a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.counts">
<span class="sig-name descname"><span class="pre">counts</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.counts" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">counts</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.counts"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.counts" title="Link to this definition"></a></dt>
<dd><p>Returns the number of instances for each of the classes in the codeframe.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -316,7 +356,7 @@ as listed by <cite>self.classes_</cite></p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.join">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">join</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Iterable</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.join" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">join</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Iterable</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.join"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.join" title="Link to this definition"></a></dt>
<dd><p>Returns a new <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> as the union of the collections given in input.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -330,7 +370,7 @@ as listed by <cite>self.classes_</cite></p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.kFCV">
<span class="sig-name descname"><span class="pre">kFCV</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">nfolds</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nrepeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.kFCV" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">kFCV</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">nfolds</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nrepeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.kFCV"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.kFCV" title="Link to this definition"></a></dt>
<dd><p>Generator of stratified folds to be used in k-fold cross validation.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -348,7 +388,7 @@ as listed by <cite>self.classes_</cite></p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.load">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">load</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">loader_func</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">callable</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">classes</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">loader_kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.load" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">load</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">loader_func</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">callable</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">classes</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">loader_kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.load"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.load" title="Link to this definition"></a></dt>
<dd><p>Loads a labelled set of data and convert it into a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> instance. The function in charge
of reading the instances must be specified. This function can be a custom one, or any of the reading functions
defined in <a class="reference internal" href="#module-quapy.data.reader" title="quapy.data.reader"><code class="xref py py-mod docutils literal notranslate"><span class="pre">quapy.data.reader</span></code></a> module.</p>
@ -371,7 +411,7 @@ these arguments are used to call <cite>loader_func(path, **loader_kwargs)</cite>
<dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.n_classes">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">n_classes</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.n_classes" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">n_classes</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.n_classes" title="Link to this definition"></a></dt>
<dd><p>The number of classes</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -382,7 +422,7 @@ these arguments are used to call <cite>loader_func(path, **loader_kwargs)</cite>
<dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.p">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">p</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.p" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">p</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.p" title="Link to this definition"></a></dt>
<dd><p>An alias to self.prevalence()</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -393,7 +433,7 @@ these arguments are used to call <cite>loader_func(path, **loader_kwargs)</cite>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.prevalence">
<span class="sig-name descname"><span class="pre">prevalence</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.prevalence" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">prevalence</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.prevalence"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.prevalence" title="Link to this definition"></a></dt>
<dd><p>Returns the prevalence, or relative frequency, of the classes in the codeframe.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -405,7 +445,7 @@ as listed by <cite>self.classes_</cite></p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.sampling">
<span class="sig-name descname"><span class="pre">sampling</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">prevs</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shuffle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.sampling" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">sampling</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">prevs</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shuffle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.sampling"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.sampling" title="Link to this definition"></a></dt>
<dd><p>Return a random sample (an instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a>) of desired size and desired prevalence
values. For each class, the sampling is drawn without replacement if the requested prevalence is larger than
the actual prevalence of the class, or with replacement otherwise.</p>
@ -429,7 +469,7 @@ prevalence == <cite>prevs</cite> if the exact prevalence values can be met as pr
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.sampling_from_index">
<span class="sig-name descname"><span class="pre">sampling_from_index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">index</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.sampling_from_index" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">sampling_from_index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">index</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.sampling_from_index"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.sampling_from_index" title="Link to this definition"></a></dt>
<dd><p>Returns an instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> whose elements are sampled from this collection using the
index.</p>
<dl class="field-list simple">
@ -444,7 +484,7 @@ index.</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.sampling_index">
<span class="sig-name descname"><span class="pre">sampling_index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">prevs</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shuffle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.sampling_index" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">sampling_index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">prevs</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shuffle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.sampling_index"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.sampling_index" title="Link to this definition"></a></dt>
<dd><p>Returns an index to be used to extract a random sample of desired size and desired prevalence values. If the
prevalence values are not specified, then returns the index of a uniform sampling.
For each class, the sampling is drawn with replacement if the requested prevalence is larger than
@ -468,7 +508,7 @@ it is constrained. E.g., for binary collections, only the prevalence <cite>p</ci
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.split_random">
<span class="sig-name descname"><span class="pre">split_random</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">train_prop</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.6</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.split_random" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">split_random</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">train_prop</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.6</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.split_random"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.split_random" title="Link to this definition"></a></dt>
<dd><p>Returns two instances of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> split randomly from this collection, at desired
proportion.</p>
<dl class="field-list simple">
@ -489,7 +529,7 @@ second one with <cite>1-train_prop</cite> elements</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.split_stratified">
<span class="sig-name descname"><span class="pre">split_stratified</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">train_prop</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.6</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.split_stratified" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">split_stratified</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">train_prop</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.6</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.split_stratified"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.split_stratified" title="Link to this definition"></a></dt>
<dd><p>Returns two instances of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> split with stratification from this collection, at desired
proportion.</p>
<dl class="field-list simple">
@ -510,7 +550,7 @@ second one with <cite>1-train_prop</cite> elements</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.stats">
<span class="sig-name descname"><span class="pre">stats</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">show</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.stats" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">stats</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">show</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.stats"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.stats" title="Link to this definition"></a></dt>
<dd><p>Returns (and eventually prints) a dictionary with some stats of this collection. E.g.,:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">data</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_reviews</span><span class="p">(</span><span class="s1">&#39;kindle&#39;</span><span class="p">,</span> <span class="n">tfidf</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">min_df</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">data</span><span class="o">.</span><span class="n">training</span><span class="o">.</span><span class="n">stats</span><span class="p">()</span>
@ -532,7 +572,7 @@ values for each class)</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.uniform_sampling">
<span class="sig-name descname"><span class="pre">uniform_sampling</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.uniform_sampling" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">uniform_sampling</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.uniform_sampling"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.uniform_sampling" title="Link to this definition"></a></dt>
<dd><p>Returns a uniform sample (an instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a>) of desired size. The sampling is drawn
with replacement if the requested size is greater than the number of instances, or without replacement
otherwise.</p>
@ -551,7 +591,7 @@ otherwise.</p>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.uniform_sampling_index">
<span class="sig-name descname"><span class="pre">uniform_sampling_index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.uniform_sampling_index" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">uniform_sampling_index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.uniform_sampling_index"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.uniform_sampling_index" title="Link to this definition"></a></dt>
<dd><p>Returns an index to be used to extract a uniform sample of desired size. The sampling is drawn
with replacement if the requested size is greater than the number of instances, or without replacement
otherwise.</p>
@ -570,7 +610,7 @@ otherwise.</p>
<dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.y">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">y</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.y" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">y</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.y" title="Link to this definition"></a></dt>
<dd><p>An alias to self.labels</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -583,10 +623,42 @@ otherwise.</p>
</section>
<section id="module-quapy.data.datasets">
<span id="quapy-data-datasets"></span><h2>quapy.data.datasets<a class="headerlink" href="#module-quapy.data.datasets" title="Permalink to this heading"></a></h2>
<span id="quapy-data-datasets-module"></span><h2>quapy.data.datasets module<a class="headerlink" href="#module-quapy.data.datasets" title="Link to this heading"></a></h2>
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_UCIDataset">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_UCIDataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">test_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></span><a class="headerlink" href="#quapy.data.datasets.fetch_UCIDataset" title="Permalink to this definition"></a></dt>
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_IFCB">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_IFCB</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">single_sample_train</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">for_model_selection</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_IFCB"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_IFCB" title="Link to this definition"></a></dt>
<dd><p>Loads the IFCB dataset for quantification from <a class="reference external" href="https://zenodo.org/records/10036244">Zenodo</a> (for more
information on this dataset, please follow the zenodo link).
This dataset is based on the data available publicly at
<a class="reference external" href="https://github.com/hsosik/WHOI-Plankton">WHOI-Plankton repo</a>.
The scripts for the processing are available at <a class="reference external" href="https://github.com/pglez82/IFCB_Zenodo">P. Gonzálezs repo</a>.
Basically, this is the IFCB dataset with precomputed features for testing quantification algorithms.</p>
<p>The datasets are downloaded only once, and stored for fast reuse.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>single_sample_train</strong> a boolean. If true, it will return the train dataset as a
<a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> (all examples together).
If false, a generator of training samples will be returned. Each example in the training set has an individual label.</p></li>
<li><p><strong>for_model_selection</strong> if True, then returns a split 30% of the training set (86 out of 286 samples) to be used for model selection;
if False, then returns the full training set as training set and the test set as the test set</p></li>
<li><p><strong>data_home</strong> specify the quapy home directory where collections will be dumped (leave empty to use the default
~/quay_data/ directory)</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>a tuple <cite>(train, test_gen)</cite> where <cite>train</cite> is an instance of
<a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a>, if <cite>single_sample_train</cite> is true or
<code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data._ifcb.IFCBTrainSamplesFromDir</span></code>, i.e. a sampling protocol that returns a series of samples
labelled example by example. test_gen will be a <code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data._ifcb.IFCBTestSamples</span></code>,
i.e., a sampling protocol that returns a series of samples labelled by prevalence.</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_UCIBinaryDataset">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_UCIBinaryDataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">test_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_UCIBinaryDataset"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_UCIBinaryDataset" title="Link to this definition"></a></dt>
<dd><p>Loads a UCI dataset as an instance of <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a>, as used in
<a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S1566253516300628">Pérez-Gállego, P., Quevedo, J. R., &amp; del Coz, J. J. (2017).
Using ensembles for problems with characterizable changes in data distribution: A case study on quantification.
@ -595,7 +667,7 @@ and
<a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S1566253517303652">Pérez-Gállego, P., Castano, A., Quevedo, J. R., &amp; del Coz, J. J. (2019).
Dynamic ensemble selection for quantification tasks.
Information Fusion, 45, 1-15.</a>.
The datasets do not come with a predefined train-test split (see <a class="reference internal" href="#quapy.data.datasets.fetch_UCILabelledCollection" title="quapy.data.datasets.fetch_UCILabelledCollection"><code class="xref py py-meth docutils literal notranslate"><span class="pre">fetch_UCILabelledCollection()</span></code></a> for further
The datasets do not come with a predefined train-test split (see <code class="xref py py-meth docutils literal notranslate"><span class="pre">fetch_UCILabelledCollection()</span></code> for further
information on how to use these collections), and so a train-test split is generated at desired proportion.
The list of valid dataset names can be accessed in <cite>quapy.data.datasets.UCI_DATASETS</cite></p>
<dl class="field-list simple">
@ -615,8 +687,8 @@ The list of valid dataset names can be accessed in <cite>quapy.data.datasets.UCI
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_UCILabelledCollection">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_UCILabelledCollection</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></span><a class="headerlink" href="#quapy.data.datasets.fetch_UCILabelledCollection" title="Permalink to this definition"></a></dt>
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_UCIBinaryLabelledCollection">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_UCIBinaryLabelledCollection</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_UCIBinaryLabelledCollection"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_UCIBinaryLabelledCollection" title="Link to this definition"></a></dt>
<dd><p>Loads a UCI collection as an instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a>, as used in
<a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S1566253516300628">Pérez-Gállego, P., Quevedo, J. R., &amp; del Coz, J. J. (2017).
Using ensembles for problems with characterizable changes in data distribution: A case study on quantification.
@ -629,8 +701,8 @@ The datasets do not come with a predefined train-test split, and so Pérez-Gáll
protocol, meaning that each collection was used to generate two rounds (hence the x2) of 5 fold cross validation.
This can be reproduced by using <a class="reference internal" href="#quapy.data.base.Dataset.kFCV" title="quapy.data.base.Dataset.kFCV"><code class="xref py py-meth docutils literal notranslate"><span class="pre">quapy.data.base.Dataset.kFCV()</span></code></a>, e.g.:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">collection</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_UCILabelledCollection</span><span class="p">(</span><span class="s2">&quot;yeast&quot;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">data</span> <span class="ow">in</span> <span class="n">qp</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">Dataset</span><span class="o">.</span><span class="n">kFCV</span><span class="p">(</span><span class="n">collection</span><span class="p">,</span> <span class="n">nfolds</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">nrepeats</span><span class="o">=</span><span class="mi">2</span><span class="p">):</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">collection</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_UCIBinaryLabelledCollection</span><span class="p">(</span><span class="s2">&quot;yeast&quot;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">data</span> <span class="ow">in</span> <span class="n">qp</span><span class="o">.</span><span class="n">train</span><span class="o">.</span><span class="n">Dataset</span><span class="o">.</span><span class="n">kFCV</span><span class="p">(</span><span class="n">collection</span><span class="p">,</span> <span class="n">nfolds</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">nrepeats</span><span class="o">=</span><span class="mi">2</span><span class="p">):</span>
<span class="gp">&gt;&gt;&gt; </span> <span class="o">...</span>
</pre></div>
</div>
@ -646,14 +718,80 @@ This can be reproduced by using <a class="reference internal" href="#quapy.data.
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> instance</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_UCIMulticlassDataset">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_UCIMulticlassDataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">test_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_UCIMulticlassDataset"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_UCIMulticlassDataset" title="Link to this definition"></a></dt>
<dd><p>Loads a UCI multiclass dataset as an instance of <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a>.</p>
<p>The list of available datasets is taken from <a class="reference external" href="https://archive.ics.uci.edu/">https://archive.ics.uci.edu/</a>, following these criteria:
- It has more than 1000 instances
- It is suited for classification
- It has more than two classes
- It is available for Python import (requires ucimlrepo package)</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">dataset</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_UCIMulticlassDataset</span><span class="p">(</span><span class="s2">&quot;dry-bean&quot;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">train</span><span class="p">,</span> <span class="n">test</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">train_test</span>
<span class="gp">&gt;&gt;&gt; </span> <span class="o">...</span>
</pre></div>
</div>
<p>The list of valid dataset names can be accessed in <cite>quapy.data.datasets.UCI_MULTICLASS_DATASETS</cite></p>
<p>The datasets are downloaded only once and pickled into disk, saving time for consecutive calls.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>dataset_name</strong> a dataset name</p></li>
<li><p><strong>data_home</strong> specify the quapy home directory where collections will be dumped (leave empty to use the default
~/quay_data/ directory)</p></li>
<li><p><strong>test_split</strong> proportion of documents to be included in the test set. The rest conforms the training set</p></li>
<li><p><strong>verbose</strong> set to True (default is False) to get information (stats) about the dataset</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a> instance</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_UCIMulticlassLabelledCollection">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_UCIMulticlassLabelledCollection</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_UCIMulticlassLabelledCollection"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_UCIMulticlassLabelledCollection" title="Link to this definition"></a></dt>
<dd><p>Loads a UCI multiclass collection as an instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a>.</p>
<p>The list of available datasets is taken from <a class="reference external" href="https://archive.ics.uci.edu/">https://archive.ics.uci.edu/</a>, following these criteria:
- It has more than 1000 instances
- It is suited for classification
- It has more than two classes
- It is available for Python import (requires ucimlrepo package)</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">collection</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_UCIMulticlassLabelledCollection</span><span class="p">(</span><span class="s2">&quot;dry-bean&quot;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">collection</span><span class="o">.</span><span class="n">Xy</span>
<span class="gp">&gt;&gt;&gt; </span> <span class="o">...</span>
</pre></div>
</div>
<p>The list of valid dataset names can be accessed in <cite>quapy.data.datasets.UCI_MULTICLASS_DATASETS</cite></p>
<p>The datasets are downloaded only once and pickled into disk, saving time for consecutive calls.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>dataset_name</strong> a dataset name</p></li>
<li><p><strong>data_home</strong> specify the quapy home directory where the dataset will be dumped (leave empty to use the default
~/quay_data/ directory)</p></li>
<li><p><strong>test_split</strong> proportion of documents to be included in the test set. The rest conforms the training set</p></li>
<li><p><strong>verbose</strong> set to True (default is False) to get information (stats) about the dataset</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> instance</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_lequa2022">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_lequa2022</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">task</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.datasets.fetch_lequa2022" title="Permalink to this definition"></a></dt>
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_lequa2022</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">task</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_lequa2022"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_lequa2022" title="Link to this definition"></a></dt>
<dd><p>Loads the official datasets provided for the <a class="reference external" href="https://lequa2022.github.io/index">LeQua</a> competition.
In brief, there are 4 tasks (T1A, T1B, T2A, T2B) having to do with text quantification
problems. Tasks T1A and T1B provide documents in vector form, while T2A and T2B provide raw documents instead.
@ -676,15 +814,15 @@ datasets.</p>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>a tuple <cite>(train, val_gen, test_gen)</cite> where <cite>train</cite> is an instance of
<a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a>, <cite>val_gen</cite> and <cite>test_gen</cite> are instances of
<code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.protocol.SamplesFromDir</span></code>, i.e., are sampling protocols that return a series of samples
labelled by prevalence.</p>
<code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data._lequa2022.SamplesFromDir</span></code>, a subclass of <a class="reference internal" href="quapy.html#quapy.protocol.AbstractProtocol" title="quapy.protocol.AbstractProtocol"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.protocol.AbstractProtocol</span></code></a>,
that return a series of samples stored in a directory which are labelled by prevalence.</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_reviews">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_reviews</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tfidf</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pickle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></span><a class="headerlink" href="#quapy.data.datasets.fetch_reviews" title="Permalink to this definition"></a></dt>
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_reviews</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tfidf</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pickle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_reviews"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_reviews" title="Link to this definition"></a></dt>
<dd><p>Loads a Reviews dataset as a Dataset instance, as used in
<a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/3269206.3269287">Esuli, A., Moreo, A., and Sebastiani, F. “A recurrent neural network for sentiment quantification.”
Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018.</a>.
@ -710,7 +848,7 @@ faster subsequent invokations</p></li>
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_twitter">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_twitter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">for_model_selection</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pickle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></span><a class="headerlink" href="#quapy.data.datasets.fetch_twitter" title="Permalink to this definition"></a></dt>
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_twitter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">for_model_selection</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pickle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_twitter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_twitter" title="Link to this definition"></a></dt>
<dd><p>Loads a Twitter dataset as a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a> instance, as used in:
<a class="reference external" href="https://link.springer.com/content/pdf/10.1007/s13278-016-0327-z.pdf">Gao, W., Sebastiani, F.: From classification to quantification in tweet sentiment analysis.
Social Network Analysis and Mining6(19), 122 (2016)</a>
@ -741,15 +879,15 @@ faster subsequent invokations</p></li>
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.warn">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">warn</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.datasets.warn" title="Permalink to this definition"></a></dt>
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">warn</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/datasets.html#warn"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.warn" title="Link to this definition"></a></dt>
<dd></dd></dl>
</section>
<section id="module-quapy.data.preprocessing">
<span id="quapy-data-preprocessing"></span><h2>quapy.data.preprocessing<a class="headerlink" href="#module-quapy.data.preprocessing" title="Permalink to this heading"></a></h2>
<span id="quapy-data-preprocessing-module"></span><h2>quapy.data.preprocessing module<a class="headerlink" href="#module-quapy.data.preprocessing" title="Link to this heading"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">IndexTransformer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer" title="Permalink to this definition"></a></dt>
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">IndexTransformer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer" title="Link to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
<p>This class implements a sklearns-style transformer that indexes text as numerical ids for the tokens it
contains, and that would be generated by sklearns
@ -763,7 +901,7 @@ contains, and that would be generated by sklearns
</dl>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer.add_word">
<span class="sig-name descname"><span class="pre">add_word</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">word</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">id</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nogaps</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.add_word" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">add_word</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">word</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">id</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nogaps</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer.add_word"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.add_word" title="Link to this definition"></a></dt>
<dd><p>Adds a new token (regardless of whether it has been found in the text or not), with dedicated id.
Useful to define special tokens for codifying unknown words, or padding tokens.</p>
<dl class="field-list simple">
@ -784,7 +922,7 @@ precedent ids stored so far</p></li>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer.fit">
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.fit" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer.fit"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.fit" title="Link to this definition"></a></dt>
<dd><p>Fits the transformer, i.e., decides on the vocabulary, given a list of strings.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -798,7 +936,7 @@ precedent ids stored so far</p></li>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer.fit_transform">
<span class="sig-name descname"><span class="pre">fit_transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.fit_transform" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">fit_transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer.fit_transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.fit_transform" title="Link to this definition"></a></dt>
<dd><p>Fits the transform on <cite>X</cite> and transforms it.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -815,7 +953,7 @@ precedent ids stored so far</p></li>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer.transform">
<span class="sig-name descname"><span class="pre">transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.transform" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer.transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.transform" title="Link to this definition"></a></dt>
<dd><p>Transforms the strings in <cite>X</cite> as lists of numerical ids</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -832,7 +970,7 @@ precedent ids stored so far</p></li>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer.vocabulary_size">
<span class="sig-name descname"><span class="pre">vocabulary_size</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.vocabulary_size" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">vocabulary_size</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer.vocabulary_size"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.vocabulary_size" title="Link to this definition"></a></dt>
<dd><p>Gets the length of the vocabulary according to which the document tokens have been indexed</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -845,7 +983,7 @@ precedent ids stored so far</p></li>
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.preprocessing.index">
<span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inplace</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.preprocessing.index" title="Permalink to this definition"></a></dt>
<span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inplace</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#index"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.index" title="Link to this definition"></a></dt>
<dd><p>Indexes the tokens of a textual <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a> of string documents.
To index a document means to replace each different token by a unique numerical index.
Rare words (i.e., words occurring less than <cite>min_df</cite> times) are replaced by a special token <cite>UNK</cite></p>
@ -869,7 +1007,7 @@ are lists of str</p></li>
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.preprocessing.reduce_columns">
<span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">reduce_columns</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inplace</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.preprocessing.reduce_columns" title="Permalink to this definition"></a></dt>
<span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">reduce_columns</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inplace</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#reduce_columns"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.reduce_columns" title="Link to this definition"></a></dt>
<dd><p>Reduces the dimensionality of the instances, represented as a <cite>csr_matrix</cite> (or any subtype of
<cite>scipy.sparse.spmatrix</cite>), of training and test documents by removing the columns of words which are not present
in at least <cite>min_df</cite> instances in the training set</p>
@ -892,7 +1030,7 @@ in the training set have been removed</p>
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.preprocessing.standardize">
<span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">standardize</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">inplace</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.preprocessing.standardize" title="Permalink to this definition"></a></dt>
<span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">standardize</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">inplace</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#standardize"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.standardize" title="Link to this definition"></a></dt>
<dd><p>Standardizes the real-valued columns of a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a>.
Standardization, aka z-scoring, of a variable <cite>X</cite> comes down to subtracting the average and normalizing by the
standard deviation.</p>
@ -912,7 +1050,7 @@ standard deviation.</p>
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.preprocessing.text2tfidf">
<span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">text2tfidf</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sublinear_tf</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inplace</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.preprocessing.text2tfidf" title="Permalink to this definition"></a></dt>
<span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">text2tfidf</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sublinear_tf</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inplace</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#text2tfidf"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.text2tfidf" title="Link to this definition"></a></dt>
<dd><p>Transforms a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a> of textual instances into a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a> of
tfidf weighted sparse vectors</p>
<dl class="field-list simple">
@ -936,10 +1074,10 @@ current Dataset (if inplace=True) where the instances are stored in a <cite>csr_
</section>
<section id="module-quapy.data.reader">
<span id="quapy-data-reader"></span><h2>quapy.data.reader<a class="headerlink" href="#module-quapy.data.reader" title="Permalink to this heading"></a></h2>
<span id="quapy-data-reader-module"></span><h2>quapy.data.reader module<a class="headerlink" href="#module-quapy.data.reader" title="Link to this heading"></a></h2>
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.reader.binarize">
<span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">binarize</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">y</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pos_class</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.reader.binarize" title="Permalink to this definition"></a></dt>
<span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">binarize</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">y</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pos_class</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/reader.html#binarize"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.reader.binarize" title="Link to this definition"></a></dt>
<dd><p>Binarizes a categorical array-like collection of labels towards the positive class <cite>pos_class</cite>. E.g.,:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">binarize</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">pos_class</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span>
@ -961,7 +1099,7 @@ current Dataset (if inplace=True) where the instances are stored in a <cite>csr_
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.reader.from_csv">
<span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">from_csv</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">encoding</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'utf-8'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.reader.from_csv" title="Permalink to this definition"></a></dt>
<span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">from_csv</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">encoding</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'utf-8'</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/reader.html#from_csv"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.reader.from_csv" title="Link to this definition"></a></dt>
<dd><p>Reads a csv file in which columns are separated by ,.
File format &lt;label&gt;,&lt;feat1&gt;,&lt;feat2&gt;,…,&lt;featn&gt;</p>
<dl class="field-list simple">
@ -979,7 +1117,7 @@ File format &lt;label&gt;,&lt;feat1&gt;,&lt;feat2&gt;,…,&lt;featn&gt;</p>
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.reader.from_sparse">
<span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">from_sparse</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.reader.from_sparse" title="Permalink to this definition"></a></dt>
<span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">from_sparse</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/reader.html#from_sparse"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.reader.from_sparse" title="Link to this definition"></a></dt>
<dd><p>Reads a labelled collection of real-valued instances expressed in sparse format
File format &lt;-1 or 0 or 1&gt;[s col(int):val(float)]</p>
<dl class="field-list simple">
@ -994,7 +1132,7 @@ File format &lt;-1 or 0 or 1&gt;[s col(int):val(float)]</p>
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.reader.from_text">
<span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">from_text</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">encoding</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'utf-8'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">class2int</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.reader.from_text" title="Permalink to this definition"></a></dt>
<span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">from_text</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">encoding</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'utf-8'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">class2int</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/reader.html#from_text"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.reader.from_text" title="Link to this definition"></a></dt>
<dd><p>Reads a labelled colletion of documents.
File fomart &lt;0 or 1&gt; &lt;document&gt;</p>
<dl class="field-list simple">
@ -1013,7 +1151,7 @@ File fomart &lt;0 or 1&gt; &lt;document&gt;</p>
<dl class="py function">
<dt class="sig sig-object py" id="quapy.data.reader.reindex_labels">
<span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">reindex_labels</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.reader.reindex_labels" title="Permalink to this definition"></a></dt>
<span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">reindex_labels</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/reader.html#reindex_labels"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.reader.reindex_labels" title="Link to this definition"></a></dt>
<dd><p>Re-indexes a list of labels as a list of indexes, and returns the classnames corresponding to the indexes.
E.g.:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">reindex_labels</span><span class="p">([</span><span class="s1">&#39;B&#39;</span><span class="p">,</span> <span class="s1">&#39;B&#39;</span><span class="p">,</span> <span class="s1">&#39;A&#39;</span><span class="p">,</span> <span class="s1">&#39;C&#39;</span><span class="p">])</span>
@ -1032,87 +1170,39 @@ E.g.:</p>
</section>
<section id="module-quapy.data">
<span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-quapy.data" title="Permalink to this heading"></a></h2>
<span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-quapy.data" title="Link to this heading"></a></h2>
</section>
</section>
<div class="clearer"></div>
</div>
</div>
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
<a href="quapy.classification.html" class="btn btn-neutral float-left" title="quapy.classification package" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
<a href="quapy.method.html" class="btn btn-neutral float-right" title="quapy.method package" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<div>
<h3><a href="index.html">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">quapy.data package</a><ul>
<li><a class="reference internal" href="#submodules">Submodules</a></li>
<li><a class="reference internal" href="#module-quapy.data.base">quapy.data.base</a></li>
<li><a class="reference internal" href="#module-quapy.data.datasets">quapy.data.datasets</a></li>
<li><a class="reference internal" href="#module-quapy.data.preprocessing">quapy.data.preprocessing</a></li>
<li><a class="reference internal" href="#module-quapy.data.reader">quapy.data.reader</a></li>
<li><a class="reference internal" href="#module-quapy.data">Module contents</a></li>
</ul>
</li>
</ul>
<hr/>
<div role="contentinfo">
<p>&#169; Copyright 2024, Alejandro Moreo.</p>
</div>
<div>
<h4>Previous topic</h4>
<p class="topless"><a href="quapy.classification.html"
title="previous chapter">quapy.classification package</a></p>
</div>
<div>
<h4>Next topic</h4>
<p class="topless"><a href="quapy.method.html"
title="next chapter">quapy.method package</a></p>
</div>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/quapy.data.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>document.getElementById('searchbox').style.display = "block"</script>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
<div class="clearer"></div>
</section>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="quapy.method.html" title="quapy.method package"
>next</a> |</li>
<li class="right" >
<a href="quapy.classification.html" title="quapy.classification package"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >quapy</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="quapy.html" >quapy package</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">quapy.data package</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2021, Alejandro Moreo.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 5.3.0.
</div>
</body>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,111 +1,121 @@
<!doctype html>
<html lang="en">
<head>
<!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Search &#8212; QuaPy 0.1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
<title>Search &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.8 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=92fd9be5" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=19f00094" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/bizstyle.js"></script>
<!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script>
<![endif]-->
<script src="_static/jquery.js?v=5d32c60e"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="_static/documentation_options.js?v=22607128"></script>
<script src="_static/doctools.js?v=9a2dae69"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="_static/js/theme.js"></script>
<script src="_static/searchtools.js"></script>
<script src="_static/language_data.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="#" />
<script src="searchindex.js" defer></script>
</head>
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<a href="index.html" class="icon icon-home">
QuaPy: A Python-based open-source framework for quantification
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="#" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Search</a></li>
</ul>
<li class="toctree-l1"><a class="reference internal" href="modules.html">quapy</a></li>
</ul>
</div>
</div>
</nav>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">QuaPy: A Python-based open-source framework for quantification</a>
</nav>
<h1 id="search-documentation">Search</h1>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item active">Search</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<noscript>
<div class="admonition warning">
<p>
Please activate JavaScript to enable the search
functionality.
<div id="fallback" class="admonition warning">
<p class="last">
Please activate JavaScript to enable the search functionality.
</p>
</div>
</noscript>
<p>
Searching for multiple words only shows matches that contain
all words.
</p>
<form action="" method="get">
<input type="text" name="q" aria-labelledby="search-documentation" value="" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="search" />
<span id="search-progress" style="padding-left: 10px"></span>
</form>
<div id="search-results">
</div>
</div>
</div>
<footer>
<div class="clearer"></div>
<hr/>
<div role="contentinfo">
<p>&#169; Copyright 2024, Alejandro Moreo.</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Search</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2021, Alejandro Moreo.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 5.3.0.
</div>
</body>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<script>
jQuery(function() { Search.loadIndex("searchindex.js"); });
</script>
<script id="searchindexloader"></script>
</body>
</html>

File diff suppressed because one or more lines are too long

View File

@ -1 +0,0 @@
<meta http-equiv="refresh" content="0; url=./build/html/index.html" />

View File

@ -0,0 +1,74 @@
from sklearn.linear_model import LogisticRegression
from time import time
import pandas as pd
from tqdm import tqdm
import quapy as qp
from quapy.protocol import APP
from quapy.method.aggregative import HDy
from quapy.method.non_aggregative import DMx
"""
This example is meant to experimentally compare HDy and HDx.
The implementations of these methods adhere to the original design of the methods; in particular, this means that
the number of bins is not an hyperparameter, but is something that the method explores internally (returning the
median of the estimates as the final prevalence prediction), and the prevalence is not searched through any
numerical optimization procedure, but simply as a linear search between 0 and 1 steppy by 0.01.
See <https://www.sciencedirect.com/science/article/pii/S0020025512004069>`_ for further details
"""
qp.environ['SAMPLE_SIZE']=100
df = pd.DataFrame(columns=['method', 'dataset', 'MAE', 'MRAE', 'tr-time', 'te-time'])
for dataset_name in tqdm(qp.datasets.UCI_BINARY_DATASETS, total=len(qp.datasets.UCI_BINARY_DATASETS)):
if dataset_name in ['acute.a', 'acute.b', 'balance.2', 'iris.1']: continue
collection = qp.datasets.fetch_UCIBinaryLabelledCollection(dataset_name, verbose=False)
train, test = collection.split_stratified()
# HDy............................................
tinit = time()
hdy = HDy(LogisticRegression()).fit(train)
t_hdy_train = time()-tinit
tinit = time()
hdy_report = qp.evaluation.evaluation_report(hdy, APP(test), error_metrics=['mae', 'mrae']).mean()
t_hdy_test = time() - tinit
df.loc[len(df)] = ['HDy', dataset_name, hdy_report['mae'], hdy_report['mrae'], t_hdy_train, t_hdy_test]
# HDx............................................
tinit = time()
hdx = DMx.HDx(n_jobs=-1).fit(train)
t_hdx_train = time() - tinit
tinit = time()
hdx_report = qp.evaluation.evaluation_report(hdx, APP(test), error_metrics=['mae', 'mrae']).mean()
t_hdx_test = time() - tinit
df.loc[len(df)] = ['HDx', dataset_name, hdx_report['mae'], hdx_report['mrae'], t_hdx_train, t_hdx_test]
# evaluation reports
print('\n'*3)
print('='*80)
print('Comparison in terms of performance')
print('='*80)
pv = df.pivot_table(index='dataset', columns='method', values=['MAE', 'MRAE'])
print(pv)
print('\nAveraged values:')
print(pv.mean())
print('\n'*3)
print('='*80)
print('Comparison in terms of efficiency')
print('='*80)
pv = df.pivot_table(index='dataset', columns='method', values=['tr-time', 'te-time'])
print(pv)
print('\nAveraged values:')
print(pv.mean())

View File

@ -0,0 +1,93 @@
import numpy as np
from sklearn.linear_model import LogisticRegression
import quapy as qp
from quapy.method.aggregative import PACC
from quapy.data import LabelledCollection
from quapy.protocol import AbstractStochasticSeededProtocol
import quapy.functional as F
"""
In this example, we create a custom protocol.
The protocol generates samples of a Gaussian mixture model with random mixture parameter (the sample prevalence).
Datapoints are univariate and we consider 2 classes only.
"""
class GaussianMixProtocol(AbstractStochasticSeededProtocol):
# We need to extend AbstractStochasticSeededProtocol if we want the samples to be replicable
def __init__(self, mu_1:float, std_1:float, mu_2:float, std_2:float, num_samples, sample_size, random_state=0):
super(GaussianMixProtocol, self).__init__(random_state) # this sets the random state
self.mu_1 = mu_1
self.std_1 = std_1
self.mu_2 = mu_2
self.std_2 = std_2
self.num_samples = num_samples
self.sample_size = sample_size
def samples_parameters(self):
# This function is inherited and has to be overriden.
# This function should return all the necessary parameters for producing the samples.
# In this case, we consider returning a vector of seeds (one for each sample) and a vector of
# randomly sampled prevalence values.
# This function will be invoked within a context that sets the seed, so it will always return the
# same parameters. In case you want different outcomes, then simply set random_state=None.
rand_offset = np.random.randint(1000)
sample_seeds = np.random.permutation(self.num_samples*2) + rand_offset
random_prevs = np.random.rand(self.num_samples)
params = np.hstack([sample_seeds.reshape(-1,2), random_prevs.reshape(-1,1)])
# each row in params contains two seeds (for generating the negatives and the positives, respectively) and
# the prevalence vector
return params
def sample(self, params):
# the params are two seeds and the positive prevalence of the sample
seed0, seed1, pos_prev = params
num_positives = int(pos_prev * self.sample_size)
num_negatives = self.sample_size - num_positives
with qp.util.temp_seed(int(seed0)):
Xneg = np.random.normal(loc=self.mu_1, scale=self.std_1, size=num_negatives)
with qp.util.temp_seed(int(seed1)):
Xpos = np.random.normal(loc=self.mu_2, scale=self.std_2, size=num_positives)
X = np.concatenate((Xneg,Xpos))
np.random.shuffle(X)
X = X.reshape(-1,1)
prev = F.as_binary_prevalence(pos_prev)
return X, prev
def total(self):
# overriding this function will allow some methods display a meaningful progress bar
return self.num_samples
mu_1, std_1 = 0, 1
mu_2, std_2 = 1, 1
gm = GaussianMixProtocol(mu_1=mu_1, std_1=std_1, mu_2=mu_2, std_2=std_2, num_samples=10, sample_size=50)
# let's see if the samples are replicated
for i, (X, prev) in enumerate(gm()):
if i>4: break
print(f'sample-{i}: {F.strprev(prev)}, some covariates={X[:5].flatten()}...')
print()
for i, (X, prev) in enumerate(gm()):
if i > 4: break
print(f'sample-{i}: {F.strprev(prev)}, some covariates={X[:5].flatten()}...')
# let's generate some training data
# The samples are replicable, but by setting a temp seed we achieve repicable training as well
with qp.util.temp_seed(0):
Xneg = np.random.normal(loc=mu_1, scale=std_1, size=100)
Xpos = np.random.normal(loc=mu_2, scale=std_2, size=100)
X = np.concatenate([Xneg, Xpos]).reshape(-1,1)
y = [0]*100 + [1]*100
training = LabelledCollection(X, y)
pacc = PACC(LogisticRegression())
pacc.fit(training)
mae = qp.evaluation.evaluate(pacc, protocol=gm, error_metric='mae', verbose=True)
print(f'PACC MAE={mae:.5f}')

View File

@ -2,7 +2,7 @@ import quapy as qp
from quapy.data import LabelledCollection
from quapy.method.base import BinaryQuantifier
from quapy.model_selection import GridSearchQ
from quapy.method.aggregative import AggregativeProbabilisticQuantifier
from quapy.method.aggregative import AggregativeSoftQuantifier
from quapy.protocol import APP
import numpy as np
from sklearn.linear_model import LogisticRegression
@ -15,7 +15,7 @@ from sklearn.linear_model import LogisticRegression
# internal hyperparameter (let say, alpha) which is the decision threshold. Let's also assume the quantifier
# is binary, for simplicity.
class MyQuantifier(AggregativeProbabilisticQuantifier, BinaryQuantifier):
class MyQuantifier(AggregativeSoftQuantifier, BinaryQuantifier):
def __init__(self, classifier, alpha=0.5):
self.alpha = alpha
# aggregative quantifiers have an internal self.classifier attribute

View File

@ -0,0 +1,49 @@
import numpy as np
import quapy as qp
from sklearn.linear_model import LogisticRegression
from quapy.model_selection import GridSearchQ
from quapy.evaluation import evaluation_report
print('Quantifying the IFCB dataset with PACC\n')
# model selection
print('loading dataset for model selection...', end='')
train, val_gen = qp.datasets.fetch_IFCB(for_model_selection=True, single_sample_train=True)
print('[done]')
print(f'\ttraining size={len(train)}, features={train.X.shape[1]}, classes={train.n_classes}')
print(f'\tvalidation samples={val_gen.total()}')
print('model selection starts')
quantifier = qp.method.aggregative.PACC(LogisticRegression())
mod_sel = GridSearchQ(
quantifier,
param_grid={
'classifier__C': np.logspace(-3,3,7),
'classifier__class_weight': [None, 'balanced']
},
protocol=val_gen,
refit=False,
n_jobs=-1,
verbose=True,
raise_errors=True
).fit(train)
print(f'model selection chose hyperparameters: {mod_sel.best_params_}')
quantifier = mod_sel.best_model_
print('loading dataset for test...', end='')
train, test_gen = qp.datasets.fetch_IFCB(for_model_selection=False, single_sample_train=True)
print('[done]')
print(f'\ttraining size={len(train)}, features={train.X.shape[1]}, classes={train.n_classes}')
print(f'\ttest samples={test_gen.total()}')
print('training on the whole dataset before test')
quantifier.fit(train)
print('testing...')
report = evaluation_report(quantifier, protocol=test_gen, error_metrics=['mae'], verbose=True)
print(report.mean())

View File

@ -1,57 +1,71 @@
import quapy as qp
from quapy.protocol import APP
from quapy.method.aggregative import DistributionMatching
from method._kdey import KDEyML
from quapy.method.non_aggregative import DMx
from quapy.protocol import APP, UPP
from quapy.method.aggregative import DMy
from sklearn.linear_model import LogisticRegression
from examples.comparing_gridsearch import OLD_GridSearchQ
import numpy as np
from time import time
"""
In this example, we show how to perform model selection on a DistributionMatching quantifier.
"""
model = DistributionMatching(LogisticRegression())
model = KDEyML(LogisticRegression())
qp.environ['SAMPLE_SIZE'] = 100
qp.environ['N_JOBS'] = -1
training, test = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=5).train_test
# training, test = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=5).train_test
training, test = qp.datasets.fetch_UCIMulticlassDataset('letter').train_test
# The model will be returned by the fit method of GridSearchQ.
# Every combination of hyper-parameters will be evaluated by confronting the
# quantifier thus configured against a series of samples generated by means
# of a sample generation protocol. For this example, we will use the
# artificial-prevalence protocol (APP), that generates samples with prevalence
# values in the entire range of values from a grid (e.g., [0, 0.1, 0.2, ..., 1]).
# We devote 30% of the dataset for this exploration.
training, validation = training.split_stratified(train_prop=0.7)
protocol = APP(validation)
with qp.util.temp_seed(0):
# We will explore a classification-dependent hyper-parameter (e.g., the 'C'
# hyper-parameter of LogisticRegression) and a quantification-dependent hyper-parameter
# (e.g., the number of bins in a DistributionMatching quantifier.
# Classifier-dependent hyper-parameters have to be marked with a prefix "classifier__"
# in order to let the quantifier know this hyper-parameter belongs to its underlying
# classifier.
param_grid = {
# The model will be returned by the fit method of GridSearchQ.
# Every combination of hyper-parameters will be evaluated by confronting the
# quantifier thus configured against a series of samples generated by means
# of a sample generation protocol. For this example, we will use the
# artificial-prevalence protocol (APP), that generates samples with prevalence
# values in the entire range of values from a grid (e.g., [0, 0.1, 0.2, ..., 1]).
# We devote 30% of the dataset for this exploration.
training, validation = training.split_stratified(train_prop=0.7)
protocol = UPP(validation)
# We will explore a classification-dependent hyper-parameter (e.g., the 'C'
# hyper-parameter of LogisticRegression) and a quantification-dependent hyper-parameter
# (e.g., the number of bins in a DistributionMatching quantifier.
# Classifier-dependent hyper-parameters have to be marked with a prefix "classifier__"
# in order to let the quantifier know this hyper-parameter belongs to its underlying
# classifier.
param_grid = {
'classifier__C': np.logspace(-3,3,7),
'nbins': [8, 16, 32, 64],
}
'classifier__class_weight': ['balanced', None],
'bandwidth': np.linspace(0.01, 0.2, 20),
}
model = qp.model_selection.GridSearchQ(
tinit = time()
# model = OLD_GridSearchQ(
model = qp.model_selection.GridSearchQ(
model=model,
param_grid=param_grid,
protocol=protocol,
error='mae', # the error to optimize is the MAE (a quantification-oriented loss)
refit=True, # retrain on the whole labelled set once done
refit=False, # retrain on the whole labelled set once done
# raise_errors=False,
verbose=True # show information as the process goes on
).fit(training)
).fit(training)
tend = time()
print(f'model selection ended: best hyper-parameters={model.best_params_}')
model = model.best_model_
# evaluation in terms of MAE
# we use the same evaluation protocol (APP) on the test set
mae_score = qp.evaluation.evaluate(model, protocol=APP(test), error_metric='mae')
mae_score = qp.evaluation.evaluate(model, protocol=UPP(test), error_metric='mae')
print(f'MAE={mae_score:.5f}')
print(f'model selection took {tend-tinit:.1f}s')

View File

@ -84,7 +84,7 @@ def run(experiment):
optim_loss, dataset_name, (model_name, model, hyperparams) = experiment
if dataset_name in ['acute.a', 'acute.b', 'iris.1']: return
collection = qp.datasets.fetch_UCILabelledCollection(dataset_name)
collection = qp.datasets.fetch_UCIBinaryLabelledCollection(dataset_name)
for run, data in enumerate(qp.data.Dataset.kFCV(collection, nfolds=5, nrepeats=1)):
if is_already_computed(dataset_name, model_name, run=run, optim_loss=optim_loss):
print(f'result for dataset={dataset_name} model={model_name} loss={optim_loss} run={run+1}/5 already computed.')
@ -104,7 +104,7 @@ def run(experiment):
timeout=60*60,
verbose=True
)
model_selection.fit(data.training)
model_selection.fit(train)
model = model_selection.best_model()
best_params = model_selection.best_params_
else:
@ -141,7 +141,7 @@ if __name__ == '__main__':
qp.environ['SVMPERF_HOME'] = args.svmperfpath
optim_losses = ['mae']
datasets = qp.datasets.UCI_DATASETS
datasets = qp.datasets.UCI_BINARY_DATASETS
models = quantification_models()
qp.util.parallel(run, itertools.product(optim_losses, datasets, models), n_jobs=N_JOBS)

View File

@ -11,7 +11,7 @@ from . import util
from . import model_selection
from . import classification
__version__ = '0.1.7'
__version__ = '0.1.8'
environ = {
'SAMPLE_SIZE': None,

View File

@ -24,7 +24,8 @@ class RecalibratedProbabilisticClassifier:
class RecalibratedProbabilisticClassifierBase(BaseEstimator, RecalibratedProbabilisticClassifier):
"""
Applies a (re)calibration method from `abstention.calibration`, as defined in
`Alexandari et al. paper <http://proceedings.mlr.press/v119/alexandari20a.html>`_:
`Alexandari et al. paper <http://proceedings.mlr.press/v119/alexandari20a.html>`_.
:param classifier: a scikit-learn probabilistic classifier
:param calibrator: the calibration object (an instance of abstention.calibration.CalibratorFactory)
@ -59,7 +60,7 @@ class RecalibratedProbabilisticClassifierBase(BaseEstimator, RecalibratedProbabi
elif isinstance(k, float):
if not (0 < k < 1):
raise ValueError('wrong value for val_split: the proportion of validation documents must be in (0,1)')
return self.fit_cv(X, y)
return self.fit_tr_val(X, y)
def fit_cv(self, X, y):
"""
@ -94,7 +95,7 @@ class RecalibratedProbabilisticClassifierBase(BaseEstimator, RecalibratedProbabi
self.classifier.fit(Xtr, ytr)
posteriors = self.classifier.predict_proba(Xva)
nclasses = len(np.unique(yva))
self.calibrator = self.calibrator(posteriors, np.eye(nclasses)[yva], posterior_supplied=True)
self.calibration_function = self.calibrator(posteriors, np.eye(nclasses)[yva], posterior_supplied=True)
return self
def predict(self, X):

104
quapy/data/_ifcb.py Normal file
View File

@ -0,0 +1,104 @@
import os
import pandas as pd
import math
from quapy.data import LabelledCollection
from quapy.protocol import AbstractProtocol
from pathlib import Path
def get_sample_list(path_dir):
"""Gets a sample list finding the csv files in a directory
Args:
path_dir (_type_): directory to look for samples
Returns:
_type_: list of samples
"""
samples = []
for filename in sorted(os.listdir(path_dir)):
if filename.endswith('.csv'):
samples.append(filename)
return samples
def generate_modelselection_split(samples, split=0.3):
"""This function generates a train/test split for model selection
without the use of random numbers so the split is always the same
Args:
samples (_type_): list of samples
split (float, optional): percentage saved for test. Defaults to 0.3.
Returns:
_type_: list of samples to use as train and list of samples to use as test
"""
num_items_to_pick = math.ceil(len(samples) * split)
step_size = math.floor(len(samples) / num_items_to_pick)
test_indices = [i * step_size for i in range(num_items_to_pick)]
test = [samples[i] for i in test_indices]
train = [item for i, item in enumerate(samples) if i not in test_indices]
return train, test
class IFCBTrainSamplesFromDir(AbstractProtocol):
def __init__(self, path_dir:str, classes: list, samples: list = None):
self.path_dir = path_dir
self.classes = classes
self.samples = []
if samples is not None:
self.samples = samples
else:
self.samples = get_sample_list(path_dir)
def __call__(self):
for sample in self.samples:
s = pd.read_csv(os.path.join(self.path_dir,sample))
# all columns but the first where we get the class
X = s.iloc[:, 1:].to_numpy()
y = s.iloc[:, 0].to_numpy()
yield LabelledCollection(X, y, classes=self.classes)
def total(self):
"""
Returns the total number of samples that the protocol generates.
:return: The number of training samples to generate.
"""
return len(self.samples)
class IFCBTestSamples(AbstractProtocol):
def __init__(self, path_dir:str, test_prevalences: pd.DataFrame, samples: list = None, classes: list=None):
self.path_dir = path_dir
self.test_prevalences = test_prevalences
self.classes = classes
if samples is not None:
self.samples = samples
else:
self.samples = get_sample_list(path_dir)
def __call__(self):
for test_sample in self.samples:
s = pd.read_csv(os.path.join(self.path_dir,test_sample))
if self.test_prevalences is not None:
X = s
# If we are working with the test samples, we have a dataframe with the prevalences and no labels for the test
prevalences = self.test_prevalences.loc[self.test_prevalences['sample']==Path(test_sample).stem].to_numpy()[:,1:].flatten().astype(float)
else:
X = s.iloc[:, 1:].to_numpy()
y = s.iloc[:,0]
# In this case we compute the sample prevalences from the labels
prevalences = y[y.isin(self.classes)].value_counts().reindex(self.classes, fill_value=0).to_numpy()/len(s)
yield X, prevalences
def total(self):
"""
Returns the total number of samples that the protocol generates.
:return: The number of training samples to generate.
"""
return len(self.samples)

View File

@ -6,9 +6,7 @@ import os
import zipfile
from os.path import join
import pandas as pd
from ucimlrepo import fetch_ucirepo
from quapy.data.base import Dataset, LabelledCollection
from quapy.data.preprocessing import text2tfidf, reduce_columns
from quapy.data.reader import *
@ -22,7 +20,7 @@ TWITTER_SENTIMENT_DATASETS_TEST = ['gasp', 'hcr', 'omd', 'sanders',
TWITTER_SENTIMENT_DATASETS_TRAIN = ['gasp', 'hcr', 'omd', 'sanders',
'semeval', 'semeval16',
'sst', 'wa', 'wb']
UCI_DATASETS = ['acute.a', 'acute.b',
UCI_BINARY_DATASETS = ['acute.a', 'acute.b',
'balance.1', 'balance.2', 'balance.3',
'breast-cancer',
'cmc.1', 'cmc.2', 'cmc.3',
@ -189,7 +187,7 @@ def fetch_twitter(dataset_name, for_model_selection=False, min_df=None, data_hom
return data
def fetch_UCIDataset(dataset_name, data_home=None, test_split=0.3, verbose=False) -> Dataset:
def fetch_UCIBinaryDataset(dataset_name, data_home=None, test_split=0.3, verbose=False) -> Dataset:
"""
Loads a UCI dataset as an instance of :class:`quapy.data.base.Dataset`, as used in
`Pérez-Gállego, P., Quevedo, J. R., & del Coz, J. J. (2017).
@ -210,11 +208,11 @@ def fetch_UCIDataset(dataset_name, data_home=None, test_split=0.3, verbose=False
:param verbose: set to True (default is False) to get information (from the UCI ML repository) about the datasets
:return: a :class:`quapy.data.base.Dataset` instance
"""
data = fetch_UCILabelledCollection(dataset_name, data_home, verbose)
data = fetch_UCIBinaryLabelledCollection(dataset_name, data_home, verbose)
return Dataset(*data.split_stratified(1 - test_split, random_state=0))
def fetch_UCILabelledCollection(dataset_name, data_home=None, verbose=False) -> LabelledCollection:
def fetch_UCIBinaryLabelledCollection(dataset_name, data_home=None, verbose=False) -> LabelledCollection:
"""
Loads a UCI collection as an instance of :class:`quapy.data.base.LabelledCollection`, as used in
`Pérez-Gállego, P., Quevedo, J. R., & del Coz, J. J. (2017).
@ -229,8 +227,8 @@ def fetch_UCILabelledCollection(dataset_name, data_home=None, verbose=False) ->
This can be reproduced by using :meth:`quapy.data.base.Dataset.kFCV`, e.g.:
>>> import quapy as qp
>>> collection = qp.datasets.fetch_UCILabelledCollection("yeast")
>>> for data in qp.domains.Dataset.kFCV(collection, nfolds=5, nrepeats=2):
>>> collection = qp.datasets.fetch_UCIBinaryLabelledCollection("yeast")
>>> for data in qp.train.Dataset.kFCV(collection, nfolds=5, nrepeats=2):
>>> ...
The list of valid dataset names can be accessed in `quapy.data.datasets.UCI_DATASETS`
@ -243,9 +241,9 @@ def fetch_UCILabelledCollection(dataset_name, data_home=None, verbose=False) ->
:return: a :class:`quapy.data.base.LabelledCollection` instance
"""
assert dataset_name in UCI_DATASETS, \
assert dataset_name in UCI_BINARY_DATASETS, \
f'Name {dataset_name} does not match any known dataset from the UCI Machine Learning datasets repository. ' \
f'Valid ones are {UCI_DATASETS}'
f'Valid ones are {UCI_BINARY_DATASETS}'
if data_home is None:
data_home = get_quapy_home()
@ -371,6 +369,7 @@ def fetch_UCILabelledCollection(dataset_name, data_home=None, verbose=False) ->
elif verbose:
print('no file description available')
if verbose:
print(f'Loading {dataset_name} ({fullname})')
if identifier == 'acute':
df = pd.read_csv(data_path, header=None, encoding='utf-16', sep='\t')
@ -552,6 +551,7 @@ def fetch_UCILabelledCollection(dataset_name, data_home=None, verbose=False) ->
y = binarize(y, pos_class='NUC')
data = LabelledCollection(X, y)
if verbose:
data.stats()
return data
@ -686,8 +686,8 @@ def fetch_lequa2022(task, data_home=None):
~/quay_data/ directory)
:return: a tuple `(train, val_gen, test_gen)` where `train` is an instance of
:class:`quapy.data.base.LabelledCollection`, `val_gen` and `test_gen` are instances of
:class:`quapy.protocol.SamplesFromDir`, i.e., are sampling protocols that return a series of samples
labelled by prevalence.
:class:`quapy.data._lequa2022.SamplesFromDir`, a subclass of :class:`quapy.protocol.AbstractProtocol`,
that return a series of samples stored in a directory which are labelled by prevalence.
"""
from quapy.data._lequa2022 import load_raw_documents, load_vector_documents, SamplesFromDir
@ -734,3 +734,83 @@ def fetch_lequa2022(task, data_home=None):
return train, val_gen, test_gen
def fetch_IFCB(single_sample_train=True, for_model_selection=False, data_home=None):
"""
Loads the IFCB dataset for quantification from `Zenodo <https://zenodo.org/records/10036244>`_ (for more
information on this dataset, please follow the zenodo link).
This dataset is based on the data available publicly at
`WHOI-Plankton repo <https://github.com/hsosik/WHOI-Plankton>`_.
The scripts for the processing are available at `P. González's repo <https://github.com/pglez82/IFCB_Zenodo>`_.
Basically, this is the IFCB dataset with precomputed features for testing quantification algorithms.
The datasets are downloaded only once, and stored for fast reuse.
:param single_sample_train: a boolean. If true, it will return the train dataset as a
:class:`quapy.data.base.LabelledCollection` (all examples together).
If false, a generator of training samples will be returned. Each example in the training set has an individual label.
:param for_model_selection: if True, then returns a split 30% of the training set (86 out of 286 samples) to be used for model selection;
if False, then returns the full training set as training set and the test set as the test set
:param data_home: specify the quapy home directory where collections will be dumped (leave empty to use the default
~/quay_data/ directory)
:return: a tuple `(train, test_gen)` where `train` is an instance of
:class:`quapy.data.base.LabelledCollection`, if `single_sample_train` is true or
:class:`quapy.data._ifcb.IFCBTrainSamplesFromDir`, i.e. a sampling protocol that returns a series of samples
labelled example by example. test_gen will be a :class:`quapy.data._ifcb.IFCBTestSamples`,
i.e., a sampling protocol that returns a series of samples labelled by prevalence.
"""
from quapy.data._ifcb import IFCBTrainSamplesFromDir, IFCBTestSamples, get_sample_list, generate_modelselection_split
if data_home is None:
data_home = get_quapy_home()
URL_TRAIN=f'https://zenodo.org/records/10036244/files/IFCB.train.zip'
URL_TEST=f'https://zenodo.org/records/10036244/files/IFCB.test.zip'
URL_TEST_PREV=f'https://zenodo.org/records/10036244/files/IFCB.test_prevalences.zip'
ifcb_dir = join(data_home, 'ifcb')
os.makedirs(ifcb_dir, exist_ok=True)
def download_unzip_and_remove(unzipped_path, url):
tmp_path = join(ifcb_dir, 'ifcb_tmp.zip')
download_file_if_not_exists(url, tmp_path)
with zipfile.ZipFile(tmp_path) as file:
file.extractall(unzipped_path)
os.remove(tmp_path)
if not os.path.exists(os.path.join(ifcb_dir,'train')):
download_unzip_and_remove(ifcb_dir, URL_TRAIN)
if not os.path.exists(os.path.join(ifcb_dir,'test')):
download_unzip_and_remove(ifcb_dir, URL_TEST)
if not os.path.exists(os.path.join(ifcb_dir,'test_prevalences.csv')):
download_unzip_and_remove(ifcb_dir, URL_TEST_PREV)
# Load test prevalences and classes
test_true_prev_path = join(ifcb_dir, 'test_prevalences.csv')
test_true_prev = pd.read_csv(test_true_prev_path)
classes = test_true_prev.columns[1:]
#Load train and test samples
train_samples_path = join(ifcb_dir,'train')
test_samples_path = join(ifcb_dir,'test')
if for_model_selection:
# In this case, return 70% of training data as the training set and 30% as the test set
samples = get_sample_list(train_samples_path)
train, test = generate_modelselection_split(samples, split=0.3)
train_gen = IFCBTrainSamplesFromDir(path_dir=train_samples_path, classes=classes, samples=train)
# Test prevalence is computed from class labels
test_gen = IFCBTestSamples(path_dir=train_samples_path, test_prevalences=None, samples=test, classes=classes)
else:
# In this case, we use all training samples as the training set and the test samples as the test set
train_gen = IFCBTrainSamplesFromDir(path_dir=train_samples_path, classes=classes)
test_gen = IFCBTestSamples(path_dir=test_samples_path, test_prevalences=test_true_prev)
# In the case the user wants it, join all the train samples in one LabelledCollection
if single_sample_train:
train = LabelledCollection.join(*[lc for lc in train_gen()])
return train, test_gen
else:
return train_gen, test_gen

View File

@ -70,6 +70,32 @@ def ae(prevs, prevs_hat):
return abs(prevs_hat - prevs).mean(axis=-1)
def nae(prevs, prevs_hat):
"""Computes the normalized absolute error between the two prevalence vectors.
Normalized absolute error between two prevalence vectors :math:`p` and :math:`\\hat{p}` is computed as
:math:`NAE(p,\\hat{p})=\\frac{AE(p,\\hat{p})}{z_{AE}}`,
where :math:`z_{AE}=\\frac{2(1-\\min_{y\\in \\mathcal{Y}} p(y))}{|\\mathcal{Y}|}`, and :math:`\\mathcal{Y}`
are the classes of interest.
:param prevs: array-like of shape `(n_classes,)` with the true prevalence values
:param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values
:return: normalized absolute error
"""
assert prevs.shape == prevs_hat.shape, f'wrong shape {prevs.shape} vs. {prevs_hat.shape}'
return abs(prevs_hat - prevs).sum(axis=-1)/(2*(1-prevs.min(axis=-1)))
def mnae(prevs, prevs_hat):
"""Computes the mean normalized absolute error (see :meth:`quapy.error.nae`) across the sample pairs.
:param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values
:param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted
prevalence values
:return: mean normalized absolute error
"""
return nae(prevs, prevs_hat).mean()
def mse(prevs, prevs_hat):
"""Computes the mean squared error (see :meth:`quapy.error.se`) across the sample pairs.
@ -216,6 +242,49 @@ def rae(prevs, prevs_hat, eps=None):
return (abs(prevs - prevs_hat) / prevs).mean(axis=-1)
def nrae(prevs, prevs_hat, eps=None):
"""Computes the normalized absolute relative error between the two prevalence vectors.
Relative absolute error between two prevalence vectors :math:`p` and :math:`\\hat{p}`
is computed as
:math:`NRAE(p,\\hat{p})= \\frac{RAE(p,\\hat{p})}{z_{RAE}}`,
where
:math:`z_{RAE} = \\frac{|\\mathcal{Y}|-1+\\frac{1-\\min_{y\\in \\mathcal{Y}} p(y)}{\\min_{y\\in \\mathcal{Y}} p(y)}}{|\\mathcal{Y}|}`
and :math:`\\mathcal{Y}` are the classes of interest.
The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`).
:param prevs: array-like of shape `(n_classes,)` with the true prevalence values
:param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values
:param eps: smoothing factor. `nrae` is not defined in cases in which the true distribution
contains zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the
sample size. If `eps=None`, the sample size will be taken from the environment variable
`SAMPLE_SIZE` (which has thus to be set beforehand).
:return: normalized relative absolute error
"""
eps = __check_eps(eps)
prevs = smooth(prevs, eps)
prevs_hat = smooth(prevs_hat, eps)
min_p = prevs.min(axis=-1)
return (abs(prevs - prevs_hat) / prevs).sum(axis=-1)/(prevs.shape[-1]-1+(1-min_p)/min_p)
def mnrae(prevs, prevs_hat, eps=None):
"""Computes the mean normalized relative absolute error (see :meth:`quapy.error.nrae`) across
the sample pairs. The distributions are smoothed using the `eps` factor (see
:meth:`quapy.error.smooth`).
:param prevs: array-like of shape `(n_samples, n_classes,)` with the true
prevalence values
:param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted
prevalence values
:param eps: smoothing factor. `mnrae` is not defined in cases in which the true
distribution contains zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`,
with :math:`T` the sample size. If `eps=None`, the sample size will be taken from
the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand).
:return: mean normalized relative absolute error
"""
return nrae(prevs, prevs_hat, eps).mean()
def smooth(prevs, eps):
""" Smooths a prevalence distribution with :math:`\\epsilon` (`eps`) as:
:math:`\\underline{p}(y)=\\frac{\\epsilon+p(y)}{\\epsilon|\\mathcal{Y}|+
@ -239,9 +308,9 @@ def __check_eps(eps=None):
CLASSIFICATION_ERROR = {f1e, acce}
QUANTIFICATION_ERROR = {mae, mrae, mse, mkld, mnkld}
QUANTIFICATION_ERROR_SINGLE = {ae, rae, se, kld, nkld}
QUANTIFICATION_ERROR_SMOOTH = {kld, nkld, rae, mkld, mnkld, mrae}
QUANTIFICATION_ERROR = {mae, mnae, mrae, mnrae, mse, mkld, mnkld}
QUANTIFICATION_ERROR_SINGLE = {ae, nae, rae, nrae, se, kld, nkld}
QUANTIFICATION_ERROR_SMOOTH = {kld, nkld, rae, nrae, mkld, mnkld, mrae}
CLASSIFICATION_ERROR_NAMES = {func.__name__ for func in CLASSIFICATION_ERROR}
QUANTIFICATION_ERROR_NAMES = {func.__name__ for func in QUANTIFICATION_ERROR}
QUANTIFICATION_ERROR_SINGLE_NAMES = {func.__name__ for func in QUANTIFICATION_ERROR_SINGLE}
@ -255,3 +324,7 @@ mean_absolute_error = mae
absolute_error = ae
mean_relative_absolute_error = mrae
relative_absolute_error = rae
normalized_absolute_error = nae
normalized_relative_absolute_error = nrae
mean_normalized_absolute_error = mnae
mean_normalized_relative_absolute_error = mnrae

View File

@ -118,14 +118,15 @@ def _prevalence_report(true_prevs, estim_prevs, error_metrics: Iterable[Union[st
assert all(hasattr(e, '__call__') for e in error_funcs), 'invalid error functions'
error_names = [e.__name__ for e in error_funcs]
df = pd.DataFrame(columns=['true-prev', 'estim-prev'] + error_names)
row_entries = []
for true_prev, estim_prev in zip(true_prevs, estim_prevs):
series = {'true-prev': true_prev, 'estim-prev': estim_prev}
for error_name, error_metric in zip(error_names, error_funcs):
score = error_metric(true_prev, estim_prev)
series[error_name] = score
df = df.append(series, ignore_index=True)
row_entries.append(series)
df = pd.DataFrame.from_records(row_entries)
return df

View File

@ -1,5 +1,7 @@
import itertools
from collections import defaultdict
from typing import Union, Callable
import scipy
import numpy as np
@ -64,7 +66,25 @@ def prevalence_from_probabilities(posteriors, binarize: bool = False):
return prevalences
def HellingerDistance(P, Q):
def as_binary_prevalence(positive_prevalence: Union[float, np.ndarray], clip_if_necessary=False):
"""
Helper that, given a float representing the prevalence for the positive class, returns a np.ndarray of two
values representing a binary distribution.
:param positive_prevalence: prevalence for the positive class
:param clip_if_necessary: if True, clips the value in [0,1] in order to guarantee the resulting distribution
is valid. If False, it then checks that the value is in the valid range, and raises an error if not.
:return: np.ndarray of shape `(2,)`
"""
if clip_if_necessary:
positive_prevalence = np.clip(positive_prevalence, 0, 1)
else:
assert 0 <= positive_prevalence <= 1, 'the value provided is not a valid prevalence for the positive class'
return np.asarray([1-positive_prevalence, positive_prevalence]).T
def HellingerDistance(P, Q) -> float:
"""
Computes the Hellingher Distance (HD) between (discretized) distributions `P` and `Q`.
The HD for two discrete distributions of `k` bins is defined as:
@ -276,3 +296,70 @@ def check_prevalence_vector(p, raise_exception=False, toleranze=1e-08):
return False
return True
def get_divergence(divergence: Union[str, Callable]):
if isinstance(divergence, str):
if divergence=='HD':
return HellingerDistance
elif divergence=='topsoe':
return TopsoeDistance
else:
raise ValueError(f'unknown divergence {divergence}')
elif callable(divergence):
return divergence
else:
raise ValueError(f'argument "divergence" not understood; use a str or a callable function')
def argmin_prevalence(loss, n_classes, method='optim_minimize'):
if method == 'optim_minimize':
return optim_minimize(loss, n_classes)
elif method == 'linear_search':
return linear_search(loss, n_classes)
elif method == 'ternary_search':
raise NotImplementedError()
else:
raise NotImplementedError()
def optim_minimize(loss, n_classes):
"""
Searches for the optimal prevalence values, i.e., an `n_classes`-dimensional vector of the (`n_classes`-1)-simplex
that yields the smallest lost. This optimization is carried out by means of a constrained search using scipy's
SLSQP routine.
:param loss: (callable) the function to minimize
:param n_classes: (int) the number of classes, i.e., the dimensionality of the prevalence vector
:return: (ndarray) the best prevalence vector found
"""
from scipy import optimize
# the initial point is set as the uniform distribution
uniform_distribution = np.full(fill_value=1 / n_classes, shape=(n_classes,))
# solutions are bounded to those contained in the unit-simplex
bounds = tuple((0, 1) for _ in range(n_classes)) # values in [0,1]
constraints = ({'type': 'eq', 'fun': lambda x: 1 - sum(x)}) # values summing up to 1
r = optimize.minimize(loss, x0=uniform_distribution, method='SLSQP', bounds=bounds, constraints=constraints)
return r.x
def linear_search(loss, n_classes):
"""
Performs a linear search for the best prevalence value in binary problems. The search is carried out by exploring
the range [0,1] stepping by 0.01. This search is inefficient, and is added only for completeness (some of the
early methods in quantification literature used it, e.g., HDy). A most powerful alternative is `optim_minimize`.
:param loss: (callable) the function to minimize
:param n_classes: (int) the number of classes, i.e., the dimensionality of the prevalence vector
:return: (ndarray) the best prevalence vector found
"""
assert n_classes==2, 'linear search is only available for binary problems'
prev_selected, min_score = None, None
for prev in prevalence_linspace(n_prevalences=100, repeats=1, smooth_limits_epsilon=0.0):
score = loss(np.asarray([1 - prev, prev]))
if min_score is None or score < min_score:
prev_selected, min_score = prev, score
return np.asarray([1 - prev_selected, prev_selected])

View File

@ -1,7 +1,7 @@
from . import aggregative
from . import base
from . import meta
from . import aggregative
from . import non_aggregative
from . import meta
AGGREGATIVE_METHODS = {
aggregative.CC,
@ -17,6 +17,9 @@ AGGREGATIVE_METHODS = {
aggregative.MAX,
aggregative.MS,
aggregative.MS2,
aggregative.KDEyML,
aggregative.KDEyCS,
aggregative.KDEyHD,
}

359
quapy/method/_kdey.py Normal file
View File

@ -0,0 +1,359 @@
from typing import Union
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.neighbors import KernelDensity
import quapy as qp
from quapy.data import LabelledCollection
from quapy.method.aggregative import AggregativeSoftQuantifier
import quapy.functional as F
from sklearn.metrics.pairwise import rbf_kernel
class KDEBase:
"""
Common ancestor for KDE-based methods. Implements some common routines.
"""
BANDWIDTH_METHOD = ['scott', 'silverman']
@classmethod
def _check_bandwidth(cls, bandwidth):
"""
Checks that the bandwidth parameter is correct
:param bandwidth: either a string (see BANDWIDTH_METHOD) or a float
:return: nothing, but raises an exception for invalid values
"""
assert bandwidth in KDEBase.BANDWIDTH_METHOD or isinstance(bandwidth, float), \
f'invalid bandwidth, valid ones are {KDEBase.BANDWIDTH_METHOD} or float values'
if isinstance(bandwidth, float):
assert 0 < bandwidth < 1, "the bandwith for KDEy should be in (0,1), since this method models the unit simplex"
def get_kde_function(self, X, bandwidth):
"""
Wraps the KDE function from scikit-learn.
:param X: data for which the density function is to be estimated
:param bandwidth: the bandwidth of the kernel
:return: a scikit-learn's KernelDensity object
"""
return KernelDensity(bandwidth=bandwidth).fit(X)
def pdf(self, kde, X):
"""
Wraps the density evalution of scikit-learn's KDE. Scikit-learn returns log-scores (s), so this
function returns :math:`e^{s}`
:param kde: a previously fit KDE function
:param X: the data for which the density is to be estimated
:return: np.ndarray with the densities
"""
return np.exp(kde.score_samples(X))
def get_mixture_components(self, X, y, n_classes, bandwidth):
"""
Returns an array containing the mixture components, i.e., the KDE functions for each class.
:param X: the data containing the covariates
:param y: the class labels
:param n_classes: integer, the number of classes
:param bandwidth: float, the bandwidth of the kernel
:return: a list of KernelDensity objects, each fitted with the corresponding class-specific covariates
"""
return [self.get_kde_function(X[y == cat], bandwidth) for cat in range(n_classes)]
class KDEyML(AggregativeSoftQuantifier, KDEBase):
"""
Kernel Density Estimation model for quantification (KDEy) relying on the Kullback-Leibler divergence (KLD) as
the divergence measure to be minimized. This method was first proposed in the paper
`Kernel Density Estimation for Multiclass Quantification <https://arxiv.org/abs/2401.00490>`_, in which
the authors show that minimizing the distribution mathing criterion for KLD is akin to performing
maximum likelihood (ML).
The distribution matching optimization problem comes down to solving:
:math:`\\hat{\\alpha} = \\arg\\min_{\\alpha\\in\\Delta^{n-1}} \\mathcal{D}(\\boldsymbol{p}_{\\alpha}||q_{\\widetilde{U}})`
where :math:`p_{\\alpha}` is the mixture of class-specific KDEs with mixture parameter (hence class prevalence)
:math:`\\alpha` defined by
:math:`\\boldsymbol{p}_{\\alpha}(\\widetilde{x}) = \\sum_{i=1}^n \\alpha_i p_{\\widetilde{L}_i}(\\widetilde{x})`
where :math:`p_X(\\boldsymbol{x}) = \\frac{1}{|X|} \\sum_{x_i\\in X} K\\left(\\frac{x-x_i}{h}\\right)` is the
KDE function that uses the datapoints in X as the kernel centers.
In KDEy-ML, the divergence is taken to be the Kullback-Leibler Divergence. This is equivalent to solving:
:math:`\\hat{\\alpha} = \\arg\\min_{\\alpha\\in\\Delta^{n-1}} -
\\mathbb{E}_{q_{\\widetilde{U}}} \\left[ \\log \\boldsymbol{p}_{\\alpha}(\\widetilde{x}) \\right]`
which corresponds to the maximum likelihood estimate.
:param classifier: a sklearn's Estimator that generates a binary classifier.
:param val_split: specifies the data used for generating classifier predictions. This specification
can be made as float in (0, 1) indicating the proportion of stratified held-out validation set to
be extracted from the training set; or as an integer (default 5), indicating that the predictions
are to be generated in a `k`-fold cross-validation manner (with this integer indicating the value
for `k`); or as a collection defining the specific set of data to use for validation.
Alternatively, this set can be specified at fit time by indicating the exact set of data
on which the predictions are to be generated.
:param bandwidth: float, the bandwidth of the Kernel
:param n_jobs: number of parallel workers
:param random_state: a seed to be set before fitting any base quantifier (default None)
"""
def __init__(self, classifier: BaseEstimator, val_split=10, bandwidth=0.1, n_jobs=None, random_state=None):
self._check_bandwidth(bandwidth)
self.classifier = classifier
self.val_split = val_split
self.bandwidth = bandwidth
self.n_jobs = n_jobs
self.random_state=random_state
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
self.mix_densities = self.get_mixture_components(*classif_predictions.Xy, data.n_classes, self.bandwidth)
return self
def aggregate(self, posteriors: np.ndarray):
"""
Searches for the mixture model parameter (the sought prevalence values) that maximizes the likelihood
of the data (i.e., that minimizes the negative log-likelihood)
:param posteriors: instances in the sample converted into posterior probabilities
:return: a vector of class prevalence estimates
"""
np.random.RandomState(self.random_state)
epsilon = 1e-10
n_classes = len(self.mix_densities)
test_densities = [self.pdf(kde_i, posteriors) for kde_i in self.mix_densities]
def neg_loglikelihood(prev):
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip (prev, test_densities))
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
return -np.sum(test_loglikelihood)
return F.optim_minimize(neg_loglikelihood, n_classes)
class KDEyHD(AggregativeSoftQuantifier, KDEBase):
"""
Kernel Density Estimation model for quantification (KDEy) relying on the squared Hellinger Disntace (HD) as
the divergence measure to be minimized. This method was first proposed in the paper
`Kernel Density Estimation for Multiclass Quantification <https://arxiv.org/abs/2401.00490>`_, in which
the authors proposed a Monte Carlo approach for minimizing the divergence.
The distribution matching optimization problem comes down to solving:
:math:`\\hat{\\alpha} = \\arg\\min_{\\alpha\\in\\Delta^{n-1}} \\mathcal{D}(\\boldsymbol{p}_{\\alpha}||q_{\\widetilde{U}})`
where :math:`p_{\\alpha}` is the mixture of class-specific KDEs with mixture parameter (hence class prevalence)
:math:`\\alpha` defined by
:math:`\\boldsymbol{p}_{\\alpha}(\\widetilde{x}) = \\sum_{i=1}^n \\alpha_i p_{\\widetilde{L}_i}(\\widetilde{x})`
where :math:`p_X(\\boldsymbol{x}) = \\frac{1}{|X|} \\sum_{x_i\\in X} K\\left(\\frac{x-x_i}{h}\\right)` is the
KDE function that uses the datapoints in X as the kernel centers.
In KDEy-HD, the divergence is taken to be the squared Hellinger Distance, an f-divergence with corresponding
f-generator function given by:
:math:`f(u)=(\\sqrt{u}-1)^2`
The authors proposed a Monte Carlo solution that relies on importance sampling:
:math:`\\hat{D}_f(p||q)= \\frac{1}{t} \\sum_{i=1}^t f\\left(\\frac{p(x_i)}{q(x_i)}\\right) \\frac{q(x_i)}{r(x_i)}`
where the datapoints (trials) :math:`x_1,\\ldots,x_t\\sim_{\\mathrm{iid}} r` with :math:`r` the
uniform distribution.
:param classifier: a sklearn's Estimator that generates a binary classifier.
:param val_split: specifies the data used for generating classifier predictions. This specification
can be made as float in (0, 1) indicating the proportion of stratified held-out validation set to
be extracted from the training set; or as an integer (default 5), indicating that the predictions
are to be generated in a `k`-fold cross-validation manner (with this integer indicating the value
for `k`); or as a collection defining the specific set of data to use for validation.
Alternatively, this set can be specified at fit time by indicating the exact set of data
on which the predictions are to be generated.
:param bandwidth: float, the bandwidth of the Kernel
:param n_jobs: number of parallel workers
:param random_state: a seed to be set before fitting any base quantifier (default None)
:param montecarlo_trials: number of Monte Carlo trials (default 10000)
"""
def __init__(self, classifier: BaseEstimator, val_split=10, divergence: str='HD',
bandwidth=0.1, n_jobs=None, random_state=None, montecarlo_trials=10000):
self._check_bandwidth(bandwidth)
self.classifier = classifier
self.val_split = val_split
self.divergence = divergence
self.bandwidth = bandwidth
self.n_jobs = n_jobs
self.random_state=random_state
self.montecarlo_trials = montecarlo_trials
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
self.mix_densities = self.get_mixture_components(*classif_predictions.Xy, data.n_classes, self.bandwidth)
N = self.montecarlo_trials
rs = self.random_state
n = data.n_classes
self.reference_samples = np.vstack([kde_i.sample(N//n, random_state=rs) for kde_i in self.mix_densities])
self.reference_classwise_densities = np.asarray([self.pdf(kde_j, self.reference_samples) for kde_j in self.mix_densities])
self.reference_density = np.mean(self.reference_classwise_densities, axis=0) # equiv. to (uniform @ self.reference_classwise_densities)
return self
def aggregate(self, posteriors: np.ndarray):
# we retain all n*N examples (sampled from a mixture with uniform parameter), and then
# apply importance sampling (IS). In this version we compute D(p_alpha||q) with IS
n_classes = len(self.mix_densities)
test_kde = self.get_kde_function(posteriors, self.bandwidth)
test_densities = self.pdf(test_kde, self.reference_samples)
def f_squared_hellinger(u):
return (np.sqrt(u)-1)**2
# todo: this will fail when self.divergence is a callable, and is not the right place to do it anyway
if self.divergence.lower() == 'hd':
f = f_squared_hellinger
else:
raise ValueError('only squared HD is currently implemented')
epsilon = 1e-10
qs = test_densities + epsilon
rs = self.reference_density + epsilon
iw = qs/rs #importance weights
p_class = self.reference_classwise_densities + epsilon
fracs = p_class/qs
def divergence(prev):
# ps / qs = (prev @ p_class) / qs = prev @ (p_class / qs) = prev @ fracs
ps_div_qs = prev @ fracs
return np.mean( f(ps_div_qs) * iw )
return F.optim_minimize(divergence, n_classes)
class KDEyCS(AggregativeSoftQuantifier):
"""
Kernel Density Estimation model for quantification (KDEy) relying on the Cauchy-Schwarz divergence (CS) as
the divergence measure to be minimized. This method was first proposed in the paper
`Kernel Density Estimation for Multiclass Quantification <https://arxiv.org/abs/2401.00490>`_, in which
the authors proposed a Monte Carlo approach for minimizing the divergence.
The distribution matching optimization problem comes down to solving:
:math:`\\hat{\\alpha} = \\arg\\min_{\\alpha\\in\\Delta^{n-1}} \\mathcal{D}(\\boldsymbol{p}_{\\alpha}||q_{\\widetilde{U}})`
where :math:`p_{\\alpha}` is the mixture of class-specific KDEs with mixture parameter (hence class prevalence)
:math:`\\alpha` defined by
:math:`\\boldsymbol{p}_{\\alpha}(\\widetilde{x}) = \\sum_{i=1}^n \\alpha_i p_{\\widetilde{L}_i}(\\widetilde{x})`
where :math:`p_X(\\boldsymbol{x}) = \\frac{1}{|X|} \\sum_{x_i\\in X} K\\left(\\frac{x-x_i}{h}\\right)` is the
KDE function that uses the datapoints in X as the kernel centers.
In KDEy-CS, the divergence is taken to be the Cauchy-Schwarz divergence given by:
:math:`\\mathcal{D}_{\\mathrm{CS}}(p||q)=-\\log\\left(\\frac{\\int p(x)q(x)dx}{\\sqrt{\\int p(x)^2dx \\int q(x)^2dx}}\\right)`
The authors showed that this distribution matching admits a closed-form solution
:param classifier: a sklearn's Estimator that generates a binary classifier.
:param val_split: specifies the data used for generating classifier predictions. This specification
can be made as float in (0, 1) indicating the proportion of stratified held-out validation set to
be extracted from the training set; or as an integer (default 5), indicating that the predictions
are to be generated in a `k`-fold cross-validation manner (with this integer indicating the value
for `k`); or as a collection defining the specific set of data to use for validation.
Alternatively, this set can be specified at fit time by indicating the exact set of data
on which the predictions are to be generated.
:param bandwidth: float, the bandwidth of the Kernel
:param n_jobs: number of parallel workers
"""
def __init__(self, classifier: BaseEstimator, val_split=10, bandwidth=0.1, n_jobs=None):
KDEBase._check_bandwidth(bandwidth)
self.classifier = classifier
self.val_split = val_split
self.bandwidth = bandwidth
self.n_jobs = n_jobs
def gram_matrix_mix_sum(self, X, Y=None):
# this adapts the output of the rbf_kernel function (pairwise evaluations of Gaussian kernels k(x,y))
# to contain pairwise evaluations of N(x|mu,Sigma1+Sigma2) with mu=y and Sigma1 and Sigma2 are
# two "scalar matrices" (h^2)*I each, so Sigma1+Sigma2 has scalar 2(h^2) (h is the bandwidth)
h = self.bandwidth
variance = 2 * (h**2)
nD = X.shape[1]
gamma = 1/(2*variance)
norm_factor = 1/np.sqrt(((2*np.pi)**nD) * (variance**(nD)))
gram = norm_factor * rbf_kernel(X, Y, gamma=gamma)
return gram.sum()
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
P, y = classif_predictions.Xy
n = data.n_classes
assert all(sorted(np.unique(y)) == np.arange(n)), \
'label name gaps not allowed in current implementation'
# counts_inv keeps track of the relative weight of each datapoint within its class
# (i.e., the weight in its KDE model)
counts_inv = 1 / (data.counts())
# tr_tr_sums corresponds to symbol \overline{B} in the paper
tr_tr_sums = np.zeros(shape=(n,n), dtype=float)
for i in range(n):
for j in range(n):
if i > j:
tr_tr_sums[i,j] = tr_tr_sums[j,i]
else:
block = self.gram_matrix_mix_sum(P[y == i], P[y == j] if i!=j else None)
tr_tr_sums[i, j] = block
# keep track of these data structures for the test phase
self.Ptr = P
self.ytr = y
self.tr_tr_sums = tr_tr_sums
self.counts_inv = counts_inv
return self
def aggregate(self, posteriors: np.ndarray):
Ptr = self.Ptr
Pte = posteriors
y = self.ytr
tr_tr_sums = self.tr_tr_sums
M, nD = Pte.shape
Minv = (1/M) # t in the paper
n = Ptr.shape[1]
# becomes a constant that does not affect the optimization, no need to compute it
# partC = 0.5*np.log(self.gram_matrix_mix_sum(Pte) * Kinv * Kinv)
# tr_te_sums corresponds to \overline{a}*(1/Li)*(1/M) in the paper (note the constants
# are already aggregated to tr_te_sums, so these multiplications are not carried out
# at each iteration of the optimization phase)
tr_te_sums = np.zeros(shape=n, dtype=float)
for i in range(n):
tr_te_sums[i] = self.gram_matrix_mix_sum(Ptr[y==i], Pte)
def divergence(alpha):
# called \overline{r} in the paper
alpha_ratio = alpha * self.counts_inv
# recal that tr_te_sums already accounts for the constant terms (1/Li)*(1/M)
partA = -np.log((alpha_ratio @ tr_te_sums) * Minv)
partB = 0.5 * np.log(alpha_ratio @ tr_tr_sums @ alpha_ratio)
return partA + partB #+ partC
return F.optim_minimize(divergence, n)

View File

@ -29,7 +29,7 @@ class QuaNetTrainer(BaseQuantifier):
>>>
>>> # load the kindle dataset as text, and convert words to numerical indexes
>>> dataset = qp.datasets.fetch_reviews('kindle', pickle=True)
>>> qp.domains.preprocessing.index(dataset, min_df=5, inplace=True)
>>> qp.train.preprocessing.index(dataset, min_df=5, inplace=True)
>>>
>>> # the text classifier is a CNN trained by NeuralClassifierTrainer
>>> cnn = CNNnet(dataset.vocabulary_size, dataset.n_classes)
@ -194,7 +194,7 @@ class QuaNetTrainer(BaseQuantifier):
label_predictions = np.argmax(posteriors, axis=-1)
prevs_estim = []
for quantifier in self.quantifiers.values():
predictions = posteriors if isinstance(quantifier, AggregativeProbabilisticQuantifier) else label_predictions
predictions = posteriors if isinstance(quantifier, AggregativeSoftQuantifier) else label_predictions
prevs_estim.extend(quantifier.aggregate(predictions))
# there is no real need for adding static estims like the TPR or FPR from training since those are constant

View File

@ -0,0 +1,261 @@
from abc import abstractmethod
import numpy as np
from sklearn.base import BaseEstimator
import quapy as qp
import quapy.functional as F
from quapy.data import LabelledCollection
from quapy.method.aggregative import BinaryAggregativeQuantifier
class ThresholdOptimization(BinaryAggregativeQuantifier):
"""
Abstract class of Threshold Optimization variants for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_.
The goal is to bring improved stability to the denominator of the adjustment.
The different variants are based on different heuristics for choosing a decision threshold
that would allow for more true positives and many more false positives, on the grounds this
would deliver larger denominators.
:param classifier: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`, defaults 5), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, classifier: BaseEstimator, val_split=5, n_jobs=None):
self.classifier = classifier
self.val_split = val_split
self.n_jobs = qp._get_njobs(n_jobs)
@abstractmethod
def condition(self, tpr, fpr) -> float:
"""
Implements the criterion according to which the threshold should be selected.
This function should return the (float) score to be minimized.
:param tpr: float, true positive rate
:param fpr: float, false positive rate
:return: float, a score for the given `tpr` and `fpr`
"""
...
def discard(self, tpr, fpr) -> bool:
"""
Indicates whether a combination of tpr and fpr should be discarded
:param tpr: float, true positive rate
:param fpr: float, false positive rate
:return: true if the combination is to be discarded, false otherwise
"""
return (tpr - fpr) == 0
def _eval_candidate_thresholds(self, decision_scores, y):
"""
Seeks for the best `tpr` and `fpr` according to the score obtained at different
decision thresholds. The scoring function is implemented in function `_condition`.
:param decision_scores: array-like with the classification scores
:param y: predicted labels for the validation set (or for the training set via `k`-fold cross validation)
:return: best `tpr` and `fpr` and `threshold` according to `_condition`
"""
candidate_thresholds = np.unique(decision_scores)
candidates = []
scores = []
for candidate_threshold in candidate_thresholds:
y_ = self.classes_[1 * (decision_scores >= candidate_threshold)]
TP, FP, FN, TN = self._compute_table(y, y_)
tpr = self._compute_tpr(TP, FN)
fpr = self._compute_fpr(FP, TN)
if not self.discard(tpr, fpr):
candidate_score = self.condition(tpr, fpr)
candidates.append([tpr, fpr, candidate_threshold])
scores.append(candidate_score)
if len(candidates) == 0:
# if no candidate gives rise to a valid combination of tpr and fpr, this method defaults to the standard
# classify & count; this is akin to assign tpr=1, fpr=0, threshold=0
tpr, fpr, threshold = 1, 0, 0
candidates.append([tpr, fpr, threshold])
scores.append(0)
candidates = np.asarray(candidates)
candidates = candidates[np.argsort(scores)] # sort candidates by candidate_score
return candidates
def aggregate_with_threshold(self, classif_predictions, tprs, fprs, thresholds):
# This function performs the adjusted count for given tpr, fpr, and threshold.
# Note that, due to broadcasting, tprs, fprs, and thresholds could be arrays of length > 1
prevs_estims = np.mean(classif_predictions[:, None] >= thresholds, axis=0)
prevs_estims = (prevs_estims - fprs) / (tprs - fprs)
prevs_estims = F.as_binary_prevalence(prevs_estims, clip_if_necessary=True)
return prevs_estims.squeeze()
def _compute_table(self, y, y_):
TP = np.logical_and(y == y_, y == self.pos_label).sum()
FP = np.logical_and(y != y_, y == self.neg_label).sum()
FN = np.logical_and(y != y_, y == self.pos_label).sum()
TN = np.logical_and(y == y_, y == self.neg_label).sum()
return TP, FP, FN, TN
def _compute_tpr(self, TP, FP):
if TP + FP == 0:
return 1
return TP / (TP + FP)
def _compute_fpr(self, FP, TN):
if FP + TN == 0:
return 0
return FP / (FP + TN)
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
decision_scores, y = classif_predictions.Xy
# the standard behavior is to keep the best threshold only
self.tpr, self.fpr, self.threshold = self._eval_candidate_thresholds(decision_scores, y)[0]
return self
def aggregate(self, classif_predictions: np.ndarray):
# the standard behavior is to compute the adjusted count using the best threshold found
return self.aggregate_with_threshold(classif_predictions, self.tpr, self.fpr, self.threshold)
class T50(ThresholdOptimization):
"""
Threshold Optimization variant for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that looks
for the threshold that makes `tpr` closest to 0.5.
The goal is to bring improved stability to the denominator of the adjustment.
:param classifier: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`, defaults 5), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, classifier: BaseEstimator, val_split=5):
super().__init__(classifier, val_split)
def condition(self, tpr, fpr) -> float:
return abs(tpr - 0.5)
class MAX(ThresholdOptimization):
"""
Threshold Optimization variant for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that looks
for the threshold that maximizes `tpr-fpr`.
The goal is to bring improved stability to the denominator of the adjustment.
:param classifier: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`, defaults 5), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, classifier: BaseEstimator, val_split=5):
super().__init__(classifier, val_split)
def condition(self, tpr, fpr) -> float:
# MAX strives to maximize (tpr - fpr), which is equivalent to minimize (fpr - tpr)
return (fpr - tpr)
class X(ThresholdOptimization):
"""
Threshold Optimization variant for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that looks
for the threshold that yields `tpr=1-fpr`.
The goal is to bring improved stability to the denominator of the adjustment.
:param classifier: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`, defaults 5), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, classifier: BaseEstimator, val_split=5):
super().__init__(classifier, val_split)
def condition(self, tpr, fpr) -> float:
return abs(1 - (tpr + fpr))
class MS(ThresholdOptimization):
"""
Median Sweep. Threshold Optimization variant for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that generates
class prevalence estimates for all decision thresholds and returns the median of them all.
The goal is to bring improved stability to the denominator of the adjustment.
:param classifier: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`, defaults 5), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, classifier: BaseEstimator, val_split=5):
super().__init__(classifier, val_split)
def condition(self, tpr, fpr) -> float:
return 1
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
decision_scores, y = classif_predictions.Xy
# keeps all candidates
tprs_fprs_thresholds = self._eval_candidate_thresholds(decision_scores, y)
self.tprs = tprs_fprs_thresholds[:, 0]
self.fprs = tprs_fprs_thresholds[:, 1]
self.thresholds = tprs_fprs_thresholds[:, 2]
return self
def aggregate(self, classif_predictions: np.ndarray):
prevalences = self.aggregate_with_threshold(classif_predictions, self.tprs, self.fprs, self.thresholds)
if prevalences.ndim==2:
prevalences = np.median(prevalences, axis=0)
return prevalences
class MS2(MS):
"""
Median Sweep 2. Threshold Optimization variant for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that generates
class prevalence estimates for all decision thresholds and returns the median of for cases in
which `tpr-fpr>0.25`
The goal is to bring improved stability to the denominator of the adjustment.
:param classifier: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`, defaults 5), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, classifier: BaseEstimator, val_split=5):
super().__init__(classifier, val_split)
def discard(self, tpr, fpr) -> bool:
return (tpr-fpr) <= 0.25

File diff suppressed because it is too large Load Diff

View File

@ -63,7 +63,7 @@ def newOneVsAll(binary_quantifier, n_jobs=None):
return OneVsAllGeneric(binary_quantifier, n_jobs)
class OneVsAllGeneric(OneVsAll,BaseQuantifier):
class OneVsAllGeneric(OneVsAll, BaseQuantifier):
"""
Allows any binary quantifier to perform quantification on single-label datasets. The method maintains one binary
quantifier for each class, and then l1-normalizes the outputs so that the class prevelence values sum up to 1.

View File

@ -1,3 +1,4 @@
import itertools
from copy import deepcopy
from typing import Union
import numpy as np
@ -10,20 +11,183 @@ import quapy as qp
from quapy import functional as F
from quapy.data import LabelledCollection
from quapy.model_selection import GridSearchQ
from quapy.method.base import BaseQuantifier, BinaryQuantifier
from quapy.method.aggregative import CC, ACC, PACC, HDy, EMQ, AggregativeQuantifier
try:
from . import neural
from . import _neural
except ModuleNotFoundError:
neural = None
from .base import BaseQuantifier
from quapy.method.aggregative import CC, ACC, PACC, HDy, EMQ
_neural = None
if neural:
QuaNet = neural.QuaNetTrainer
if _neural:
QuaNet = _neural.QuaNetTrainer
else:
QuaNet = "QuaNet is not available due to missing torch package"
class MedianEstimator2(BinaryQuantifier):
"""
This method is a meta-quantifier that returns, as the estimated class prevalence values, the median of the
estimation returned by differently (hyper)parameterized base quantifiers.
The median of unit-vectors is only guaranteed to be a unit-vector for n=2 dimensions,
i.e., in cases of binary quantification.
:param base_quantifier: the base, binary quantifier
:param random_state: a seed to be set before fitting any base quantifier (default None)
:param param_grid: the grid or parameters towards which the median will be computed
:param n_jobs: number of parllel workes
"""
def __init__(self, base_quantifier: BinaryQuantifier, param_grid: dict, random_state=None, n_jobs=None):
self.base_quantifier = base_quantifier
self.param_grid = param_grid
self.random_state = random_state
self.n_jobs = qp._get_njobs(n_jobs)
def get_params(self, deep=True):
return self.base_quantifier.get_params(deep)
def set_params(self, **params):
self.base_quantifier.set_params(**params)
def _delayed_fit(self, args):
with qp.util.temp_seed(self.random_state):
params, training = args
model = deepcopy(self.base_quantifier)
model.set_params(**params)
model.fit(training)
return model
def fit(self, training: LabelledCollection):
self._check_binary(training, self.__class__.__name__)
configs = qp.model_selection.expand_grid(self.param_grid)
self.models = qp.util.parallel(
self._delayed_fit,
((params, training) for params in configs),
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs
)
return self
def _delayed_predict(self, args):
model, instances = args
return model.quantify(instances)
def quantify(self, instances):
prev_preds = qp.util.parallel(
self._delayed_predict,
((model, instances) for model in self.models),
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs
)
prev_preds = np.asarray(prev_preds)
return np.median(prev_preds, axis=0)
class MedianEstimator(BinaryQuantifier):
"""
This method is a meta-quantifier that returns, as the estimated class prevalence values, the median of the
estimation returned by differently (hyper)parameterized base quantifiers.
The median of unit-vectors is only guaranteed to be a unit-vector for n=2 dimensions,
i.e., in cases of binary quantification.
:param base_quantifier: the base, binary quantifier
:param random_state: a seed to be set before fitting any base quantifier (default None)
:param param_grid: the grid or parameters towards which the median will be computed
:param n_jobs: number of parllel workes
"""
def __init__(self, base_quantifier: BinaryQuantifier, param_grid: dict, random_state=None, n_jobs=None):
self.base_quantifier = base_quantifier
self.param_grid = param_grid
self.random_state = random_state
self.n_jobs = qp._get_njobs(n_jobs)
def get_params(self, deep=True):
return self.base_quantifier.get_params(deep)
def set_params(self, **params):
self.base_quantifier.set_params(**params)
def _delayed_fit(self, args):
with qp.util.temp_seed(self.random_state):
params, training = args
model = deepcopy(self.base_quantifier)
model.set_params(**params)
model.fit(training)
return model
def _delayed_fit_classifier(self, args):
with qp.util.temp_seed(self.random_state):
cls_params, training = args
model = deepcopy(self.base_quantifier)
model.set_params(**cls_params)
predictions = model.classifier_fit_predict(training, predict_on=model.val_split)
return (model, predictions)
def _delayed_fit_aggregation(self, args):
with qp.util.temp_seed(self.random_state):
((model, predictions), q_params), training = args
model = deepcopy(model)
model.set_params(**q_params)
model.aggregation_fit(predictions, training)
return model
def fit(self, training: LabelledCollection):
self._check_binary(training, self.__class__.__name__)
if isinstance(self.base_quantifier, AggregativeQuantifier):
cls_configs, q_configs = qp.model_selection.group_params(self.param_grid)
if len(cls_configs) > 1:
models_preds = qp.util.parallel(
self._delayed_fit_classifier,
((params, training) for params in cls_configs),
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs,
asarray=False
)
else:
model = self.base_quantifier
model.set_params(**cls_configs[0])
predictions = model.classifier_fit_predict(training, predict_on=model.val_split)
models_preds = [(model, predictions)]
self.models = qp.util.parallel(
self._delayed_fit_aggregation,
((setup, training) for setup in itertools.product(models_preds, q_configs)),
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs,
asarray=False
)
else:
configs = qp.model_selection.expand_grid(self.param_grid)
self.models = qp.util.parallel(
self._delayed_fit,
((params, training) for params in configs),
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs,
asarray=False
)
return self
def _delayed_predict(self, args):
model, instances = args
return model.quantify(instances)
def quantify(self, instances):
prev_preds = qp.util.parallel(
self._delayed_predict,
((model, instances) for model in self.models),
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs,
asarray=False
)
prev_preds = np.asarray(prev_preds)
return np.median(prev_preds, axis=0)
class Ensemble(BaseQuantifier):
VALID_POLICIES = {'ave', 'ptr', 'ds'} | qp.error.QUANTIFICATION_ERROR_NAMES
@ -94,9 +258,10 @@ class Ensemble(BaseQuantifier):
print('[Ensemble]' + msg)
def fit(self, data: qp.data.LabelledCollection, val_split: Union[qp.data.LabelledCollection, float] = None):
self._sout('Fit')
if self.policy == 'ds' and not data.binary:
raise ValueError(f'ds policy is only defined for binary quantification, but this dataset is not binary')
if val_split is None:
val_split = self.val_split
@ -119,6 +284,7 @@ class Ensemble(BaseQuantifier):
self.ensemble = qp.util.parallel(
_delayed_new_instance,
tqdm(args, desc='fitting ensamble', total=self.size) if self.verbose else args,
asarray=False,
n_jobs=self.n_jobs)
# static selection policy (the name of a quantification-oriented error function to minimize)
@ -200,30 +366,31 @@ class Ensemble(BaseQuantifier):
def _ds_policy_get_posteriors(self, data: LabelledCollection):
"""
In the original article, this procedure is not described in a sufficient level of detail. The paper only says
In the original article, there are some aspects regarding this method that are not mentioned. The paper says
that the distribution of posterior probabilities from training and test examples is compared by means of the
Hellinger Distance. However, how these posterior probabilities are generated is not specified. In the article,
a Logistic Regressor (LR) is used as the classifier device and that could be used for this purpose. However, in
general, a Quantifier is not necessarily an instance of Aggreggative Probabilistic Quantifiers, and so, that the
quantifier builds on top of a probabilistic classifier cannot be given for granted. Additionally, it would not
be correct to generate the posterior probabilities for training documents that have concurred in training the
be correct to generate the posterior probabilities for training instances that have concurred in training the
classifier that generates them.
This function thus generates the posterior probabilities for all training documents in a cross-validation way,
using a LR with hyperparameters that have previously been optimized via grid search in 5FCV.
:return P,f, where P is a ndarray containing the posterior probabilities of the training data, generated via
using LR with hyperparameters that have previously been optimized via grid search in 5FCV.
:param data: a LabelledCollection
:return: (P,f,) where P is an ndarray containing the posterior probabilities of the training data, generated via
cross-validation and using an optimized LR, and the function to be used in order to generate posterior
probabilities for test instances.
"""
X, y = data.Xy
lr_base = LogisticRegression(class_weight='balanced', max_iter=1000)
optim = GridSearchCV(
lr_base, param_grid={'C': np.logspace(-4, 4, 9)}, cv=5, n_jobs=self.n_jobs, refit=True
).fit(X, y)
param_grid = {'C': np.logspace(-4, 4, 9)}
optim = GridSearchCV(lr_base, param_grid=param_grid, cv=5, n_jobs=self.n_jobs, refit=True).fit(X, y)
posteriors = cross_val_predict(
optim.best_estimator_, X, y, cv=5, n_jobs=self.n_jobs, method='predict_proba'
)
posteriors = cross_val_predict(optim.best_estimator_, X, y, cv=5, n_jobs=self.n_jobs, method='predict_proba')
posteriors_generator = optim.best_estimator_.predict_proba
return posteriors, posteriors_generator
@ -294,8 +461,10 @@ def _delayed_new_instance(args):
tr_prevalence = sample.prevalence()
tr_distribution = get_probability_distribution(posteriors[sample_index]) if (posteriors is not None) else None
if verbose:
print(f'\t\--fit-ended for prev {F.strprev(prev)}')
return (model, tr_prevalence, tr_distribution, sample if keep_samples else None)
@ -306,8 +475,9 @@ def _delayed_quantify(args):
def _draw_simplex(ndim, min_val, max_trials=100):
"""
returns a uniform sampling from the ndim-dimensional simplex but guarantees that all dimensions
Returns a uniform sampling from the ndim-dimensional simplex but guarantees that all dimensions
are >= min_class_prev (for min_val>0, this makes the sampling not truly uniform)
:param ndim: number of dimensions of the simplex
:param min_val: minimum class prevalence allowed. If less than 1/ndim a ValueError will be throw since
there is no possible solution.

View File

@ -1,5 +1,10 @@
from typing import Union, Callable
import numpy as np
from quapy.functional import get_divergence
from quapy.data import LabelledCollection
from .base import BaseQuantifier
from quapy.method.base import BaseQuantifier, BinaryQuantifier
import quapy.functional as F
class MaximumLikelihoodPrevalenceEstimation(BaseQuantifier):
@ -33,3 +38,126 @@ class MaximumLikelihoodPrevalenceEstimation(BaseQuantifier):
"""
return self.estimated_prevalence
class DMx(BaseQuantifier):
"""
Generic Distribution Matching quantifier for binary or multiclass quantification based on the space of covariates.
This implementation takes the number of bins, the divergence, and the possibility to work on CDF as hyperparameters.
:param nbins: number of bins used to discretize the distributions (default 8)
:param divergence: a string representing a divergence measure (currently, "HD" and "topsoe" are implemented)
or a callable function taking two ndarrays of the same dimension as input (default "HD", meaning Hellinger
Distance)
:param cdf: whether to use CDF instead of PDF (default False)
:param n_jobs: number of parallel workers (default None)
"""
def __init__(self, nbins=8, divergence: Union[str, Callable]='HD', cdf=False, search='optim_minimize', n_jobs=None):
self.nbins = nbins
self.divergence = divergence
self.cdf = cdf
self.search = search
self.n_jobs = n_jobs
@classmethod
def HDx(cls, n_jobs=None):
"""
`Hellinger Distance x <https://www.sciencedirect.com/science/article/pii/S0020025512004069>`_ (HDx).
HDx is a method for training binary quantifiers, that models quantification as the problem of
minimizing the average divergence (in terms of the Hellinger Distance) across the feature-specific normalized
histograms of two representations, one for the unlabelled examples, and another generated from the training
examples as a mixture model of the class-specific representations. The parameters of the mixture thus represent
the estimates of the class prevalence values.
The method computes all matchings for nbins in [10, 20, ..., 110] and reports the mean of the median.
The best prevalence is searched via linear search, from 0 to 1 stepping by 0.01.
:param n_jobs: number of parallel workers
:return: an instance of this class setup to mimick the performance of the HDx as originally proposed by
González-Castro, Alaiz-Rodríguez, Alegre (2013)
"""
from quapy.method.meta import MedianEstimator
dmx = DMx(divergence='HD', cdf=False, search='linear_search')
nbins = {'nbins': np.linspace(10, 110, 11, dtype=int)}
hdx = MedianEstimator(base_quantifier=dmx, param_grid=nbins, n_jobs=n_jobs)
return hdx
def __get_distributions(self, X):
histograms = []
for feat_idx in range(self.nfeats):
feature = X[:, feat_idx]
feat_range = self.feat_ranges[feat_idx]
hist = np.histogram(feature, bins=self.nbins, range=feat_range)[0]
norm_hist = hist / hist.sum()
histograms.append(norm_hist)
distributions = np.vstack(histograms)
if self.cdf:
distributions = np.cumsum(distributions, axis=1)
return distributions
def fit(self, data: LabelledCollection):
"""
Generates the validation distributions out of the training data (covariates).
The validation distributions have shape `(n, nfeats, nbins)`, with `n` the number of classes, `nfeats`
the number of features, and `nbins` the number of bins.
In particular, let `V` be the validation distributions; then `di=V[i]` are the distributions obtained from
training data labelled with class `i`; while `dij = di[j]` is the discrete distribution for feature j in
training data labelled with class `i`, and `dij[k]` is the fraction of instances with a value in the `k`-th bin.
:param data: the training set
"""
X, y = data.Xy
self.nfeats = X.shape[1]
self.feat_ranges = _get_features_range(X)
self.validation_distribution = np.asarray(
[self.__get_distributions(X[y==cat]) for cat in range(data.n_classes)]
)
return self
def quantify(self, instances):
"""
Searches for the mixture model parameter (the sought prevalence values) that yields a validation distribution
(the mixture) that best matches the test distribution, in terms of the divergence measure of choice.
The matching is computed as the average dissimilarity (in terms of the dissimilarity measure of choice)
between all feature-specific discrete distributions.
:param instances: instances in the sample
:return: a vector of class prevalence estimates
"""
assert instances.shape[1] == self.nfeats, f'wrong shape; expected {self.nfeats}, found {instances.shape[1]}'
test_distribution = self.__get_distributions(instances)
divergence = get_divergence(self.divergence)
n_classes, n_feats, nbins = self.validation_distribution.shape
def loss(prev):
prev = np.expand_dims(prev, axis=0)
mixture_distribution = (prev @ self.validation_distribution.reshape(n_classes,-1)).reshape(n_feats, -1)
divs = [divergence(test_distribution[feat], mixture_distribution[feat]) for feat in range(n_feats)]
return np.mean(divs)
return F.argmin_prevalence(loss, n_classes, method=self.search)
def _get_features_range(X):
feat_ranges = []
ncols = X.shape[1]
for col_idx in range(ncols):
feature = X[:,col_idx]
feat_ranges.append((np.min(feature), np.max(feature)))
return feat_ranges
#---------------------------------------------------------------
# aliases
#---------------------------------------------------------------
DistributionMatchingX = DMx

View File

@ -1,7 +1,9 @@
import itertools
import signal
from copy import deepcopy
from enum import Enum
from typing import Union, Callable
from functools import wraps
import numpy as np
from sklearn import clone
@ -10,10 +12,37 @@ import quapy as qp
from quapy import evaluation
from quapy.protocol import AbstractProtocol, OnLabelledCollectionProtocol
from quapy.data.base import LabelledCollection
from quapy.method.aggregative import BaseQuantifier
from quapy.method.aggregative import BaseQuantifier, AggregativeQuantifier
from quapy.util import timeout
from time import time
class Status(Enum):
SUCCESS = 1
TIMEOUT = 2
INVALID = 3
ERROR = 4
class ConfigStatus:
def __init__(self, params, status, msg=''):
self.params = params
self.status = status
self.msg = msg
def __str__(self):
return f':params:{self.params} :status:{self.status} ' + self.msg
def __repr__(self):
return str(self)
def success(self):
return self.status == Status.SUCCESS
def failed(self):
return self.status != Status.SUCCESS
class GridSearchQ(BaseQuantifier):
"""Grid Search optimization targeting a quantification-oriented metric.
@ -26,11 +55,14 @@ class GridSearchQ(BaseQuantifier):
:param protocol: a sample generation protocol, an instance of :class:`quapy.protocol.AbstractProtocol`
:param error: an error function (callable) or a string indicating the name of an error function (valid ones
are those in :class:`quapy.error.QUANTIFICATION_ERROR`
:param refit: whether or not to refit the model on the whole labelled collection (training+validation) with
:param refit: whether to refit the model on the whole labelled collection (training+validation) with
the best chosen hyperparameter combination. Ignored if protocol='gen'
:param timeout: establishes a timer (in seconds) for each of the hyperparameters configurations being tested.
Whenever a run takes longer than this timer, that configuration will be ignored. If all configurations end up
being ignored, a TimeoutError exception is raised. If -1 (default) then no time bound is set.
:param raise_errors: boolean, if True then raises an exception when a param combination yields any error, if
otherwise is False (default), then the combination is marked with an error status, but the process goes on.
However, if no configuration yields a valid model, then a ValueError exception will be raised.
:param verbose: set to True to get information through the stdout
"""
@ -42,6 +74,7 @@ class GridSearchQ(BaseQuantifier):
refit=True,
timeout=-1,
n_jobs=None,
raise_errors=False,
verbose=False):
self.model = model
@ -50,6 +83,7 @@ class GridSearchQ(BaseQuantifier):
self.refit = refit
self.timeout = timeout
self.n_jobs = qp._get_njobs(n_jobs)
self.raise_errors = raise_errors
self.verbose = verbose
self.__check_error(error)
assert isinstance(protocol, AbstractProtocol), 'unknown protocol'
@ -69,6 +103,113 @@ class GridSearchQ(BaseQuantifier):
raise ValueError(f'unexpected error type; must either be a callable function or a str representing\n'
f'the name of an error function in {qp.error.QUANTIFICATION_ERROR_NAMES}')
def _prepare_classifier(self, cls_params):
model = deepcopy(self.model)
def job(cls_params):
model.set_params(**cls_params)
predictions = model.classifier_fit_predict(self._training)
return predictions
predictions, status, took = self._error_handler(job, cls_params)
self._sout(f'[classifier fit] hyperparams={cls_params} [took {took:.3f}s]')
return model, predictions, status, took
def _prepare_aggregation(self, args):
model, predictions, cls_took, cls_params, q_params = args
model = deepcopy(model)
params = {**cls_params, **q_params}
def job(q_params):
model.set_params(**q_params)
model.aggregation_fit(predictions, self._training)
score = evaluation.evaluate(model, protocol=self.protocol, error_metric=self.error)
return score
score, status, aggr_took = self._error_handler(job, q_params)
self._print_status(params, score, status, aggr_took)
return model, params, score, status, (cls_took+aggr_took)
def _prepare_nonaggr_model(self, params):
model = deepcopy(self.model)
def job(params):
model.set_params(**params)
model.fit(self._training)
score = evaluation.evaluate(model, protocol=self.protocol, error_metric=self.error)
return score
score, status, took = self._error_handler(job, params)
self._print_status(params, score, status, took)
return model, params, score, status, took
def _break_down_fit(self):
"""
Decides whether to break down the fit phase in two (classifier-fit followed by aggregation-fit).
In order to do so, some conditions should be met: a) the quantifier is of type aggregative,
b) the set of hyperparameters can be split into two disjoint non-empty groups.
:return: True if the conditions are met, False otherwise
"""
if not isinstance(self.model, AggregativeQuantifier):
return False
cls_configs, q_configs = group_params(self.param_grid)
if (len(cls_configs) == 1) or (len(q_configs)==1):
return False
return True
def _compute_scores_aggregative(self, training):
# break down the set of hyperparameters into two: classifier-specific, quantifier-specific
cls_configs, q_configs = group_params(self.param_grid)
# train all classifiers and get the predictions
self._training = training
cls_outs = qp.util.parallel(
self._prepare_classifier,
cls_configs,
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs
)
# filter out classifier configurations that yielded any error
success_outs = []
for (model, predictions, status, took), cls_config in zip(cls_outs, cls_configs):
if status.success():
success_outs.append((model, predictions, took, cls_config))
else:
self.error_collector.append(status)
if len(success_outs) == 0:
raise ValueError('No valid configuration found for the classifier!')
# explore the quantifier-specific hyperparameters for each valid training configuration
aggr_configs = [(*out, q_config) for out, q_config in itertools.product(success_outs, q_configs)]
aggr_outs = qp.util.parallel(
self._prepare_aggregation,
aggr_configs,
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs
)
return aggr_outs
def _compute_scores_nonaggregative(self, training):
configs = expand_grid(self.param_grid)
self._training = training
scores = qp.util.parallel(
self._prepare_nonaggr_model,
configs,
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs
)
return scores
def _print_status(self, params, score, status, took):
if status.success():
self._sout(f'hyperparams=[{params}]\t got {self.error.__name__} = {score:.5f} [took {took:.3f}s]')
else:
self._sout(f'error={status}')
def fit(self, training: LabelledCollection):
""" Learning routine. Fits methods with all combinations of hyperparameters and selects the one minimizing
the error metric.
@ -76,97 +217,63 @@ class GridSearchQ(BaseQuantifier):
:param training: the training set on which to optimize the hyperparameters
:return: self
"""
params_keys = list(self.param_grid.keys())
params_values = list(self.param_grid.values())
protocol = self.protocol
self.param_scores_ = {}
self.best_score_ = None
if self.refit and not isinstance(self.protocol, OnLabelledCollectionProtocol):
raise RuntimeWarning(
f'"refit" was requested, but the protocol does not implement '
f'the {OnLabelledCollectionProtocol.__name__} interface'
)
tinit = time()
hyper = [dict({k: val[i] for i, k in enumerate(params_keys)}) for val in itertools.product(*params_values)]
self._sout(f'starting model selection with {self.n_jobs =}')
#pass a seed to parallel so it is set in clild processes
scores = qp.util.parallel(
self._delayed_eval,
((params, training) for params in hyper),
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs
)
self.error_collector = []
for params, score, model in scores:
if score is not None:
self._sout(f'starting model selection with n_jobs={self.n_jobs}')
if self._break_down_fit():
results = self._compute_scores_aggregative(training)
else:
results = self._compute_scores_nonaggregative(training)
self.param_scores_ = {}
self.best_score_ = None
for model, params, score, status, took in results:
if status.success():
if self.best_score_ is None or score < self.best_score_:
self.best_score_ = score
self.best_params_ = params
self.best_model_ = model
self.param_scores_[str(params)] = score
else:
self.param_scores_[str(params)] = 'timeout'
self.param_scores_[str(params)] = status.status
self.error_collector.append(status)
tend = time()-tinit
if self.best_score_ is None:
raise TimeoutError('no combination of hyperparameters seem to work')
raise ValueError('no combination of hyperparameters seemed to work')
self._sout(f'optimization finished: best params {self.best_params_} (score={self.best_score_:.5f}) '
f'[took {tend:.4f}s]')
no_errors = len(self.error_collector)
if no_errors>0:
self._sout(f'warning: {no_errors} errors found')
for err in self.error_collector:
self._sout(f'\t{str(err)}')
if self.refit:
if isinstance(protocol, OnLabelledCollectionProtocol):
if isinstance(self.protocol, OnLabelledCollectionProtocol):
tinit = time()
self._sout(f'refitting on the whole development set')
self.best_model_.fit(training + protocol.get_labelled_collection())
self.best_model_.fit(training + self.protocol.get_labelled_collection())
tend = time() - tinit
self.refit_time_ = tend
else:
raise RuntimeWarning(f'"refit" was requested, but the protocol does not '
f'implement the {OnLabelledCollectionProtocol.__name__} interface')
# already checked
raise RuntimeWarning(f'the model cannot be refit on the whole dataset')
return self
def _delayed_eval(self, args):
params, training = args
protocol = self.protocol
error = self.error
if self.timeout > 0:
def handler(signum, frame):
raise TimeoutError()
signal.signal(signal.SIGALRM, handler)
tinit = time()
if self.timeout > 0:
signal.alarm(self.timeout)
try:
model = deepcopy(self.model)
# overrides default parameters with the parameters being explored at this iteration
model.set_params(**params)
model.fit(training)
score = evaluation.evaluate(model, protocol=protocol, error_metric=error)
ttime = time()-tinit
self._sout(f'hyperparams={params}\t got {error.__name__} score {score:.5f} [took {ttime:.4f}s]')
if self.timeout > 0:
signal.alarm(0)
except TimeoutError:
self._sout(f'timeout ({self.timeout}s) reached for config {params}')
score = None
except ValueError as e:
self._sout(f'the combination of hyperparameters {params} is invalid')
raise e
except Exception as e:
self._sout(f'something went wrong for config {params}; skipping:')
self._sout(f'\tException: {e}')
score = None
return params, score, model
def quantify(self, instances):
"""Estimate class prevalence values using the best model found after calling the :meth:`fit` method.
@ -203,7 +310,42 @@ class GridSearchQ(BaseQuantifier):
return self.best_model_
raise ValueError('best_model called before fit')
def _error_handler(self, func, params):
"""
Endorses one job with two returned values: the status, and the time of execution
:param func: the function to be called
:param params: parameters of the function
:return: `tuple(out, status, time)` where `out` is the function output,
`status` is an enum value from `Status`, and `time` is the time it
took to complete the call
"""
output = None
def _handle(status, exception):
if self.raise_errors:
raise exception
else:
return ConfigStatus(params, status)
try:
with timeout(self.timeout):
tinit = time()
output = func(params)
status = ConfigStatus(params, Status.SUCCESS)
except TimeoutError as e:
status = _handle(Status.TIMEOUT, e)
except ValueError as e:
status = _handle(Status.INVALID, e)
except Exception as e:
status = _handle(Status.ERROR, e)
took = time() - tinit
return output, status, took
def cross_val_predict(quantifier: BaseQuantifier, data: LabelledCollection, nfolds=3, random_state=0):
@ -223,9 +365,49 @@ def cross_val_predict(quantifier: BaseQuantifier, data: LabelledCollection, nfol
for train, test in data.kFCV(nfolds=nfolds, random_state=random_state):
quantifier.fit(train)
fold_prev = quantifier.quantify(test.X)
rel_size = len(test.X)/len(data)
rel_size = 1. * len(test) / len(data)
total_prev += fold_prev*rel_size
return total_prev
def expand_grid(param_grid: dict):
"""
Expands a param_grid dictionary as a list of configurations.
Example:
>>> combinations = expand_grid({'A': [1, 10, 100], 'B': [True, False]})
>>> print(combinations)
>>> [{'A': 1, 'B': True}, {'A': 1, 'B': False}, {'A': 10, 'B': True}, {'A': 10, 'B': False}, {'A': 100, 'B': True}, {'A': 100, 'B': False}]
:param param_grid: dictionary with keys representing hyper-parameter names, and values representing the range
to explore for that hyper-parameter
:return: a list of configurations, i.e., combinations of hyper-parameter assignments in the grid.
"""
params_keys = list(param_grid.keys())
params_values = list(param_grid.values())
configs = [{k: combs[i] for i, k in enumerate(params_keys)} for combs in itertools.product(*params_values)]
return configs
def group_params(param_grid: dict):
"""
Partitions a param_grid dictionary as two lists of configurations, one for the classifier-specific
hyper-parameters, and another for que quantifier-specific hyper-parameters
:param param_grid: dictionary with keys representing hyper-parameter names, and values representing the range
to explore for that hyper-parameter
:return: two expanded grids of configurations, one for the classifier, another for the quantifier
"""
classifier_params, quantifier_params = {}, {}
for key, values in param_grid.items():
if key.startswith('classifier__') or key == 'val_split':
classifier_params[key] = values
else:
quantifier_params[key] = values
classifier_configs = expand_grid(classifier_params)
quantifier_configs = expand_grid(quantifier_params)
return classifier_configs, quantifier_configs

View File

@ -236,7 +236,7 @@ class APP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol):
raise RuntimeError(
f"Abort: the number of samples that will be generated by {self.__class__.__name__} ({n}) "
f"exceeds the maximum number of allowed samples ({sanity_check = }). Set 'sanity_check' to "
f"None for bypassing this check, or to a higher number.")
f"None, or to a higher number, for bypassing this check.")
self.collator = OnLabelledCollectionProtocol.get_collator(return_type)

View File

@ -1,8 +1,8 @@
import pytest
from quapy.data.datasets import REVIEWS_SENTIMENT_DATASETS, TWITTER_SENTIMENT_DATASETS_TEST, \
TWITTER_SENTIMENT_DATASETS_TRAIN, UCI_DATASETS, LEQUA2022_TASKS, \
fetch_reviews, fetch_twitter, fetch_UCIDataset, fetch_lequa2022
TWITTER_SENTIMENT_DATASETS_TRAIN, UCI_BINARY_DATASETS, LEQUA2022_TASKS, UCI_MULTICLASS_DATASETS,\
fetch_reviews, fetch_twitter, fetch_UCIBinaryDataset, fetch_lequa2022, fetch_UCIMulticlassLabelledCollection
@pytest.mark.parametrize('dataset_name', REVIEWS_SENTIMENT_DATASETS)
@ -29,10 +29,10 @@ def test_fetch_twitter(dataset_name):
print('Test set stats')
@pytest.mark.parametrize('dataset_name', UCI_DATASETS)
@pytest.mark.parametrize('dataset_name', UCI_BINARY_DATASETS)
def test_fetch_UCIDataset(dataset_name):
try:
dataset = fetch_UCIDataset(dataset_name)
dataset = fetch_UCIBinaryDataset(dataset_name)
except FileNotFoundError as fnfe:
if dataset_name == 'pageblocks.5' and fnfe.args[0].find(
'If this is the first time you attempt to load this dataset') > 0:
@ -44,6 +44,15 @@ def test_fetch_UCIDataset(dataset_name):
print('Test set stats')
@pytest.mark.parametrize('dataset_name', UCI_MULTICLASS_DATASETS)
def test_fetch_UCIMultiDataset(dataset_name):
dataset = fetch_UCIMulticlassLabelledCollection(dataset_name)
print(f'Dataset {dataset_name}')
print('Training set stats')
dataset.stats()
print('Test set stats')
@pytest.mark.parametrize('dataset_name', LEQUA2022_TASKS)
def test_fetch_lequa2022(dataset_name):
train, gen_val, gen_test = fetch_lequa2022(dataset_name)

View File

@ -6,7 +6,7 @@ import quapy as qp
from sklearn.linear_model import LogisticRegression
from time import time
from error import QUANTIFICATION_ERROR_SINGLE, QUANTIFICATION_ERROR, QUANTIFICATION_ERROR_NAMES, \
from quapy.error import QUANTIFICATION_ERROR_SINGLE, QUANTIFICATION_ERROR, QUANTIFICATION_ERROR_NAMES, \
QUANTIFICATION_ERROR_SINGLE_NAMES
from quapy.method.aggregative import EMQ, PCC
from quapy.method.base import BaseQuantifier

View File

@ -1,12 +1,8 @@
import unittest
from sklearn.linear_model import LogisticRegression
import quapy as qp
from quapy.method.aggregative import *
class HierarchyTestCase(unittest.TestCase):
def test_aggregative(self):
@ -22,9 +18,11 @@ class HierarchyTestCase(unittest.TestCase):
def test_probabilistic(self):
lr = LogisticRegression()
for m in [CC(lr), ACC(lr)]:
self.assertEqual(isinstance(m, AggregativeProbabilisticQuantifier), False)
self.assertEqual(isinstance(m, AggregativeCrispQuantifier), True)
self.assertEqual(isinstance(m, AggregativeSoftQuantifier), False)
for m in [PCC(lr), PACC(lr)]:
self.assertEqual(isinstance(m, AggregativeProbabilisticQuantifier), True)
self.assertEqual(isinstance(m, AggregativeCrispQuantifier), False)
self.assertEqual(isinstance(m, AggregativeSoftQuantifier), True)
if __name__ == '__main__':

View File

@ -1,25 +1,29 @@
import numpy
import numpy as np
import pytest
from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
import method.aggregative
import quapy as qp
from quapy.model_selection import GridSearchQ
from quapy.method.base import BinaryQuantifier
from quapy.data import Dataset, LabelledCollection
from quapy.method import AGGREGATIVE_METHODS, NON_AGGREGATIVE_METHODS
from quapy.method.aggregative import ACC, PACC, HDy
from quapy.method.meta import Ensemble
from quapy.protocol import APP
from quapy.method.aggregative import DMy
from quapy.method.meta import MedianEstimator
datasets = [pytest.param(qp.datasets.fetch_twitter('hcr', pickle=True), id='hcr'),
pytest.param(qp.datasets.fetch_UCIDataset('ionosphere'), id='ionosphere')]
# datasets = [pytest.param(qp.datasets.fetch_twitter('hcr', pickle=True), id='hcr'),
# pytest.param(qp.datasets.fetch_UCIDataset('ionosphere'), id='ionosphere')]
tinydatasets = [pytest.param(qp.datasets.fetch_twitter('hcr', pickle=True).reduce(), id='tiny_hcr'),
pytest.param(qp.datasets.fetch_UCIDataset('ionosphere').reduce(), id='tiny_ionosphere')]
pytest.param(qp.datasets.fetch_UCIBinaryDataset('ionosphere').reduce(), id='tiny_ionosphere')]
learners = [LogisticRegression, LinearSVC]
@pytest.mark.parametrize('dataset', datasets)
@pytest.mark.parametrize('dataset', tinydatasets)
@pytest.mark.parametrize('aggregative_method', AGGREGATIVE_METHODS)
@pytest.mark.parametrize('learner', learners)
def test_aggregative_methods(dataset: Dataset, aggregative_method, learner):
@ -36,10 +40,10 @@ def test_aggregative_methods(dataset: Dataset, aggregative_method, learner):
true_prevalences = dataset.test.prevalence()
error = qp.error.mae(true_prevalences, estim_prevalences)
assert type(error) == numpy.float64
assert type(error) == np.float64
@pytest.mark.parametrize('dataset', datasets)
@pytest.mark.parametrize('dataset', tinydatasets)
@pytest.mark.parametrize('non_aggregative_method', NON_AGGREGATIVE_METHODS)
def test_non_aggregative_methods(dataset: Dataset, non_aggregative_method):
model = non_aggregative_method()
@ -55,23 +59,24 @@ def test_non_aggregative_methods(dataset: Dataset, non_aggregative_method):
true_prevalences = dataset.test.prevalence()
error = qp.error.mae(true_prevalences, estim_prevalences)
assert type(error) == numpy.float64
assert type(error) == np.float64
@pytest.mark.parametrize('base_method', AGGREGATIVE_METHODS)
@pytest.mark.parametrize('base_method', [method.aggregative.ACC, method.aggregative.PACC])
@pytest.mark.parametrize('learner', [LogisticRegression])
@pytest.mark.parametrize('dataset', tinydatasets)
@pytest.mark.parametrize('policy', Ensemble.VALID_POLICIES)
def test_ensemble_method(base_method, learner, dataset: Dataset, policy):
qp.environ['SAMPLE_SIZE'] = 20
base_quantifier=base_method(learner())
if isinstance(base_quantifier, BinaryQuantifier) and not dataset.binary:
print(f'skipping the test of binary model {base_quantifier} on non-binary dataset {dataset}')
return
if not dataset.binary and policy=='ds':
print(f'skipping the test of binary policy ds on non-binary dataset {dataset}')
return
model = Ensemble(quantifier=base_quantifier, size=5, policy=policy, n_jobs=-1)
model = Ensemble(quantifier=base_quantifier, size=3, policy=policy, n_jobs=-1)
model.fit(dataset.training)
@ -80,7 +85,7 @@ def test_ensemble_method(base_method, learner, dataset: Dataset, policy):
true_prevalences = dataset.test.prevalence()
error = qp.error.mae(true_prevalences, estim_prevalences)
assert type(error) == numpy.float64
assert type(error) == np.float64
def test_quanet_method():
@ -90,13 +95,10 @@ def test_quanet_method():
print('skipping QuaNet test due to missing torch package')
return
qp.environ['SAMPLE_SIZE'] = 100
# load the kindle dataset as text, and convert words to numerical indexes
dataset = qp.datasets.fetch_reviews('kindle', pickle=True)
dataset = Dataset(dataset.training.sampling(200, *dataset.training.prevalence()),
dataset.test.sampling(200, *dataset.test.prevalence()))
dataset = qp.datasets.fetch_reviews('kindle', pickle=True).reduce(200, 200)
qp.data.preprocessing.index(dataset, min_df=5, inplace=True)
from quapy.classification.neural import CNNnet
@ -119,7 +121,7 @@ def test_quanet_method():
true_prevalences = dataset.test.prevalence()
error = qp.error.mae(true_prevalences, estim_prevalences)
assert type(error) == numpy.float64
assert type(error) == np.float64
def test_str_label_names():
@ -130,32 +132,103 @@ def test_str_label_names():
dataset.test.sampling(1000, 0.25, 0.75))
qp.data.preprocessing.text2tfidf(dataset, min_df=5, inplace=True)
numpy.random.seed(0)
np.random.seed(0)
model.fit(dataset.training)
int_estim_prevalences = model.quantify(dataset.test.instances)
true_prevalences = dataset.test.prevalence()
error = qp.error.mae(true_prevalences, int_estim_prevalences)
assert type(error) == numpy.float64
assert type(error) == np.float64
dataset_str = Dataset(LabelledCollection(dataset.training.instances,
['one' if label == 1 else 'zero' for label in dataset.training.labels]),
LabelledCollection(dataset.test.instances,
['one' if label == 1 else 'zero' for label in dataset.test.labels]))
assert all(dataset_str.training.classes_ == dataset_str.test.classes_), 'wrong indexation'
numpy.random.seed(0)
np.random.seed(0)
model.fit(dataset_str.training)
str_estim_prevalences = model.quantify(dataset_str.test.instances)
true_prevalences = dataset_str.test.prevalence()
error = qp.error.mae(true_prevalences, str_estim_prevalences)
assert type(error) == numpy.float64
assert type(error) == np.float64
print(true_prevalences)
print(int_estim_prevalences)
print(str_estim_prevalences)
numpy.testing.assert_almost_equal(int_estim_prevalences[1],
np.testing.assert_almost_equal(int_estim_prevalences[1],
str_estim_prevalences[list(model.classes_).index('one')])
# helper
def __fit_test(quantifier, train, test):
quantifier.fit(train)
test_samples = APP(test)
true_prevs, estim_prevs = qp.evaluation.prediction(quantifier, test_samples)
return qp.error.mae(true_prevs, estim_prevs), estim_prevs
def test_median_meta():
"""
This test compares the performance of the MedianQuantifier with respect to computing the median of the predictions
of a differently parameterized quantifier. We use the DistributionMatching base quantifier and the median is
computed across different values of nbins
"""
qp.environ['SAMPLE_SIZE'] = 100
# grid of values
nbins_grid = list(range(2, 11))
dataset = 'kindle'
train, test = qp.datasets.fetch_reviews(dataset, tfidf=True, min_df=10).train_test
prevs = []
errors = []
for nbins in nbins_grid:
with qp.util.temp_seed(0):
q = DMy(LogisticRegression(), nbins=nbins)
mae, estim_prevs = __fit_test(q, train, test)
prevs.append(estim_prevs)
errors.append(mae)
print(f'{dataset} DistributionMatching(nbins={nbins}) got MAE {mae:.4f}')
prevs = np.asarray(prevs)
mae = np.mean(errors)
print(f'\tMAE={mae:.4f}')
q = DMy(LogisticRegression())
q = MedianEstimator(q, param_grid={'nbins': nbins_grid}, random_state=0, n_jobs=-1)
median_mae, prev = __fit_test(q, train, test)
print(f'\tMAE={median_mae:.4f}')
np.testing.assert_almost_equal(np.median(prevs, axis=0), prev)
assert median_mae < mae, 'the median-based quantifier provided a higher error...'
def test_median_meta_modsel():
"""
This test checks the median-meta quantifier with model selection
"""
qp.environ['SAMPLE_SIZE'] = 100
dataset = 'kindle'
train, test = qp.datasets.fetch_reviews(dataset, tfidf=True, min_df=10).train_test
train, val = train.split_stratified(random_state=0)
nbins_grid = [2, 4, 5, 10, 15]
q = DMy(LogisticRegression())
q = MedianEstimator(q, param_grid={'nbins': nbins_grid}, random_state=0, n_jobs=-1)
median_mae, _ = __fit_test(q, train, test)
print(f'\tMAE={median_mae:.4f}')
q = DMy(LogisticRegression())
lr_params = {'classifier__C': np.logspace(-1, 1, 3)}
q = MedianEstimator(q, param_grid={'nbins': nbins_grid}, random_state=0, n_jobs=-1)
q = GridSearchQ(q, param_grid=lr_params, protocol=APP(val), n_jobs=-1)
optimized_median_ave, _ = __fit_test(q, train, test)
print(f'\tMAE={optimized_median_ave:.4f}')
assert optimized_median_ave < median_mae, "the optimized method yielded worse performance..."

View File

@ -97,11 +97,22 @@ class ModselTestCase(unittest.TestCase):
param_grid = {'classifier__C': np.logspace(-3,3,7)}
app = APP(validation, sample_size=100, random_state=1)
q = GridSearchQ(
q, param_grid, protocol=app, error='mae', refit=True, timeout=3, n_jobs=-1, verbose=True
print('Expecting TimeoutError to be raised')
modsel = GridSearchQ(
q, param_grid, protocol=app, timeout=3, n_jobs=-1, verbose=True, raise_errors=True
)
with self.assertRaises(TimeoutError):
q.fit(training)
modsel.fit(training)
print('Expecting ValueError to be raised')
modsel = GridSearchQ(
q, param_grid, protocol=app, timeout=3, n_jobs=-1, verbose=True, raise_errors=False
)
with self.assertRaises(ValueError):
# this exception is not raised because of the timeout, but because no combination of hyperparams
# succedded (in this case, a ValueError is raised, regardless of "raise_errors"
modsel.fit(training)
if __name__ == '__main__':

View File

@ -3,14 +3,16 @@ import quapy as qp
from quapy.data import LabelledCollection
from quapy.functional import strprev
from sklearn.linear_model import LogisticRegression
import numpy as np
from quapy.method.aggregative import PACC
import quapy.functional as F
class MyTestCase(unittest.TestCase):
def test_prediction_replicability(self):
dataset = qp.datasets.fetch_UCIDataset('yeast')
dataset = qp.datasets.fetch_UCIBinaryDataset('yeast')
with qp.util.temp_seed(0):
lr = LogisticRegression(random_state=0, max_iter=10000)
@ -26,8 +28,8 @@ class MyTestCase(unittest.TestCase):
self.assertEqual(str_prev1, str_prev2) # add assertion here
def test_samping_replicability(self):
import numpy as np
def equal_collections(c1, c2, value=True):
self.assertEqual(np.all(c1.X == c2.X), value)
@ -74,5 +76,36 @@ class MyTestCase(unittest.TestCase):
equal_collections(sample1_te, sample2_te, True)
def test_parallel_replicability(self):
train, test = qp.datasets.fetch_UCIMulticlassDataset('dry-bean').train_test
test = test.sampling(500, *[0.1, 0.0, 0.1, 0.1, 0.2, 0.5, 0.0])
with qp.util.temp_seed(10):
pacc = PACC(LogisticRegression(), val_split=2, n_jobs=2)
pacc.fit(train, val_split=0.5)
prev1 = F.strprev(pacc.quantify(test.instances))
with qp.util.temp_seed(0):
pacc = PACC(LogisticRegression(), val_split=2, n_jobs=2)
pacc.fit(train, val_split=0.5)
prev2 = F.strprev(pacc.quantify(test.instances))
with qp.util.temp_seed(0):
pacc = PACC(LogisticRegression(), val_split=2, n_jobs=2)
pacc.fit(train, val_split=0.5)
prev3 = F.strprev(pacc.quantify(test.instances))
print(prev1)
print(prev2)
print(prev3)
self.assertNotEqual(prev1, prev2)
self.assertEqual(prev2, prev3)
if __name__ == '__main__':
unittest.main()

View File

@ -10,6 +10,8 @@ import quapy as qp
import numpy as np
from joblib import Parallel, delayed
from time import time
import signal
def _get_parallel_slices(n_tasks, n_jobs):
@ -22,7 +24,7 @@ def _get_parallel_slices(n_tasks, n_jobs):
def map_parallel(func, args, n_jobs):
"""
Applies func to n_jobs slices of args. E.g., if args is an array of 99 items and `n_jobs`=2, then
Applies func to n_jobs slices of args. E.g., if args is an array of 99 items and n_jobs=2, then
func is applied in two parallel processes to args[0:50] and to args[50:99]. func is a function
that already works with a list of arguments.
@ -38,7 +40,7 @@ def map_parallel(func, args, n_jobs):
return list(itertools.chain.from_iterable(results))
def parallel(func, args, n_jobs, seed=None):
def parallel(func, args, n_jobs, seed=None, asarray=True, backend='loky'):
"""
A wrapper of multiprocessing:
@ -47,7 +49,13 @@ def parallel(func, args, n_jobs, seed=None):
>>> )
that takes the `quapy.environ` variable as input silently.
Seeds the child processes to ensure reproducibility when n_jobs>1
Seeds the child processes to ensure reproducibility when n_jobs>1.
:param func: callable
:param args: args of func
:param seed: the numeric seed
:param asarray: set to True to return a np.ndarray instead of a list
:param backend: indicates the backend used for handling parallel works
"""
def func_dec(environ, seed, *args):
qp.environ = environ.copy()
@ -58,9 +66,12 @@ def parallel(func, args, n_jobs, seed=None):
stack.enter_context(qp.util.temp_seed(seed))
return func(*args)
return Parallel(n_jobs=n_jobs)(
out = Parallel(n_jobs=n_jobs, backend=backend)(
delayed(func_dec)(qp.environ, None if seed is None else seed+i, args_i) for i, args_i in enumerate(args)
)
if asarray:
out = np.asarray(out)
return out
@contextlib.contextmanager
@ -254,3 +265,35 @@ class EarlyStop:
if self.patience <= 0:
self.STOP = True
@contextlib.contextmanager
def timeout(seconds):
"""
Opens a context that will launch an exception if not closed after a given number of seconds
>>> def func(start_msg, end_msg):
>>> print(start_msg)
>>> sleep(2)
>>> print(end_msg)
>>>
>>> with timeout(1):
>>> func('begin function', 'end function')
>>> Out[]
>>> begin function
>>> TimeoutError
:param seconds: number of seconds, set to <=0 to ignore the timer
"""
if seconds > 0:
def handler(signum, frame):
raise TimeoutError()
signal.signal(signal.SIGALRM, handler)
signal.alarm(seconds)
yield
if seconds > 0:
signal.alarm(0)

View File

@ -113,7 +113,7 @@ setup(
python_requires='>=3.8, <4',
install_requires=['scikit-learn', 'pandas', 'tqdm', 'matplotlib', 'joblib', 'xlrd', 'abstention'],
install_requires=['scikit-learn', 'pandas', 'tqdm', 'matplotlib', 'joblib', 'xlrd', 'abstention', 'ucimlrepo'],
# List additional groups of dependencies here (e.g. development
# dependencies). Users will be able to install these using the "extras"