1
0
Fork 0

evaluation script and format checker added

This commit is contained in:
Alejandro Moreo Fernandez 2021-10-25 13:37:22 +02:00
parent 5f15b365fe
commit 9a08125e7e
7 changed files with 166 additions and 85 deletions

View File

@ -5,4 +5,5 @@
5. plots
6. estoy leyendo los samples en orden, y no hace falta. Sería mejor una función genérica que lee todos los ejemplos y
que de todos modos genera un output con el mismo nombre del file
7. Make ResultSubmission class abstract, and create 4 instances thus forcing the field task_name to be set correctly
7. Make ResultSubmission class abstract, and create 4 instances thus forcing the field task_name to be set correctly
8. No me convence que la lectura de los samples (caso en que no hay ground truth) viene en orden aleatorio

6
LeQua2022/constants.py Normal file
View File

@ -0,0 +1,6 @@
DEV_SAMPLES = 1000
TEST_SAMPLES = 5000
T1A_SAMPLE_SIZE = 250
ERROR_TOL=1E-3

View File

@ -7,6 +7,9 @@ import quapy as qp
import numpy as np
import sklearn
import re
from glob import glob
import constants
# def load_binary_raw_document(path):
@ -20,14 +23,38 @@ import re
# def load_multiclass_raw_document(path):
# return qp.data.from_text(path, verbose=0, class2int=False)
def load_category_map(path):
cat2code = {}
with open(path, 'rt') as fin:
category, code = fin.readline().split()
cat2code[category] = int(code)
return cat2code
def load_binary_vectors(path, nF=None):
return sklearn.datasets.load_svmlight_file(path, n_features=nF)
def gen_load_samples_T1A(path_dir:str, ground_truth_path:str = None):
# for ... : yield
pass
def __gen_load_samples_with_groudtruth(path_dir:str, ground_truth_path:str, load_fn, **load_kwargs):
true_prevs = ResultSubmission.load(ground_truth_path)
for filename, prevalence in true_prevs.iterrows():
sample, _ = load_fn(os.path.join(path_dir, filename), **load_kwargs)
yield filename, sample, prevalence
def __gen_load_samples_without_groudtruth(path_dir:str, load_fn, **load_kwargs):
for filepath in glob(os.path.join(path_dir, '*_sample_*.txt')):
sample, _ = load_fn(filepath, **load_kwargs)
yield os.path.basename(filepath), sample
def gen_load_samples_T1A(path_dir:str, nF:int, ground_truth_path:str = None):
if ground_truth_path is None:
for filename, sample in __gen_load_samples_without_groudtruth(path_dir, load_binary_vectors, nF=nF):
yield filename, sample
else:
for filename, sample, prevalence in __gen_load_samples_with_groudtruth(path_dir, ground_truth_path, load_binary_vectors, nF=nF):
yield filename, sample, prevalence
def gen_load_samples_T1B(path_dir:str, ground_truth_path:str = None):
@ -46,9 +73,6 @@ def gen_load_samples_T2B(path_dir:str, ground_truth_path:str = None):
class ResultSubmission:
DEV_LEN = 1000
TEST_LEN = 5000
ERROR_TOL = 1E-3
def __init__(self, categories: List[str]):
if not isinstance(categories, list) or len(categories) < 2:
@ -80,9 +104,9 @@ class ResultSubmission:
raise ValueError(f'error: wrong shape found for prevalence vector {prevalence_values}')
if (prevalence_values<0).any() or (prevalence_values>1).any():
raise ValueError(f'error: prevalence values out of range [0,1] for "{sample_name}"')
if np.abs(prevalence_values.sum()-1) > ResultSubmission.ERROR_TOL:
if np.abs(prevalence_values.sum()-1) > constants.ERROR_TOL:
raise ValueError(f'error: prevalence values do not sum up to one for "{sample_name}"'
f'(error tolerance {ResultSubmission.ERROR_TOL})')
f'(error tolerance {constants.ERROR_TOL})')
new_entry = dict([('filename',sample_name)]+[(col_i,prev_i) for col_i, prev_i in zip(self.categories, prevalence_values)])
self.df = self.df.append(new_entry, ignore_index=True)
@ -93,7 +117,7 @@ class ResultSubmission:
@classmethod
def load(cls, path: str) -> 'ResultSubmission':
df, inferred_type = ResultSubmission.check_file_format(path, return_inferred_type=True)
r = ResultSubmission(categories=df.columns.values.tolist())
r = ResultSubmission(categories=df.columns.values[1:].tolist())
r.inferred_type = inferred_type
r.df = df
return r
@ -102,13 +126,19 @@ class ResultSubmission:
ResultSubmission.check_dataframe_format(self.df)
self.df.to_csv(path)
def get(self, sample_name:str):
def prevalence(self, sample_name:str):
sel = self.df.loc[self.df['filename'] == sample_name]
if sel.empty:
return None
else:
return sel.loc[:,self.df.columns[1]:].values.flatten()
def iterrows(self):
for index, row in self.df.iterrows():
filename = row.filename
prevalence = row[self.df.columns[1]:].values.flatten()
yield filename, prevalence
@classmethod
def check_file_format(cls, path, return_inferred_type=False) -> Union[pd.DataFrame, Tuple[pd.DataFrame, str]]:
df = pd.read_csv(path, index_col=0)
@ -116,7 +146,7 @@ class ResultSubmission:
@classmethod
def check_dataframe_format(cls, df, path=None, return_inferred_type=False) -> Union[pd.DataFrame, Tuple[pd.DataFrame, str]]:
hint_path = '' # if given, show the data path in the error messages
hint_path = '' # if given, show the data path in the error message
if path is not None:
hint_path = f' in {path}'
@ -125,33 +155,33 @@ class ResultSubmission:
if df.empty:
raise ValueError(f'error{hint_path}: results file is empty')
elif len(df) == ResultSubmission.DEV_LEN:
elif len(df) == constants.DEV_SAMPLES:
inferred_type = 'dev'
expected_len = ResultSubmission.DEV_LEN
elif len(df) == ResultSubmission.TEST_LEN:
expected_len = constants.DEV_SAMPLES
elif len(df) == constants.TEST_SAMPLES:
inferred_type = 'test'
expected_len = ResultSubmission.TEST_LEN
expected_len = constants.TEST_SAMPLES
else:
raise ValueError(f'wrong number of prevalence values found{hint_path}; '
f'expected {ResultSubmission.DEV_LEN} for development sets and '
f'{ResultSubmission.TEST_LEN} for test sets; found {len(df)}')
f'expected {constants.DEV_SAMPLES} for development sets and '
f'{constants.TEST_SAMPLES} for test sets; found {len(df)}')
set_names = frozenset(df.filename)
for i in range(expected_len):
if f'{inferred_type}_sample_{i}.txt' not in set_names:
raise ValueError(f'{hint_path} a file with {len(df)} entries is assumed to be of type '
raise ValueError(f'error{hint_path} a file with {len(df)} entries is assumed to be of type '
f'"{inferred_type}" but entry {inferred_type}_sample_{i}.txt is missing '
f'(among perhaps many others)')
for category_name in df.columns[1:]:
if (df[category_name] < 0).any() or (df[category_name] > 1).any():
raise ValueError(f'{hint_path} column "{category_name}" contains values out of range [0,1]')
raise ValueError(f'error{hint_path} column "{category_name}" contains values out of range [0,1]')
prevs = df.loc[:, df.columns[1]:].values
round_errors = np.abs(prevs.sum(axis=-1) - 1.) > ResultSubmission.ERROR_TOL
round_errors = np.abs(prevs.sum(axis=-1) - 1.) > constants.ERROR_TOL
if round_errors.any():
raise ValueError(f'warning: prevalence values in rows with id {np.where(round_errors)[0].tolist()} '
f'do not sum up to 1 (error tolerance {ResultSubmission.ERROR_TOL}), '
f'do not sum up to 1 (error tolerance {constants.ERROR_TOL}), '
f'probably due to some rounding errors.')
if return_inferred_type:
@ -163,20 +193,31 @@ class ResultSubmission:
self.df = self.df.reindex([self.df.columns[0]] + sorted(self.df.columns[1:]), axis=1)
self.categories = sorted(self.categories)
def filenames(self):
return self.df.filename.values
def evaluate_submission(true_prevs: ResultSubmission, predicted_prevs: ResultSubmission, sample_size=1000, average=True):
def evaluate_submission(true_prevs: ResultSubmission, predicted_prevs: ResultSubmission, sample_size=None, average=True):
if sample_size is None:
if qp.environ['SAMPLE_SIZE'] is None:
raise ValueError('Relative Absolute Error cannot be computed: '
'neither sample_size nor qp.environ["SAMPLE_SIZE"] have been specified')
else:
sample_size = qp.environ['SAMPLE_SIZE']
if len(true_prevs) != len(predicted_prevs):
raise ValueError(f'size mismatch, groun truth has {len(true_prevs)} entries '
f'while predictions contain {len(predicted_prevs)} entries')
raise ValueError(f'size mismatch, ground truth file has {len(true_prevs)} entries '
f'while the file of predictions contain {len(predicted_prevs)} entries')
true_prevs.sort_categories()
predicted_prevs.sort_categories()
if true_prevs.categories != predicted_prevs.categories:
raise ValueError(f'these result files are not comparable since the categories are different')
raise ValueError(f'these result files are not comparable since the categories are different: '
f'true={true_prevs.categories} vs. predictions={predicted_prevs.categories}')
ae, rae = [], []
for sample_name in true_prevs.df.filename.values:
ae.append(qp.error.mae(true_prevs.get(sample_name), predicted_prevs.get(sample_name)))
rae.append(qp.error.mrae(true_prevs.get(sample_name), predicted_prevs.get(sample_name), eps=sample_size))
for sample_name, true_prevalence in true_prevs.iterrows():
pred_prevalence = predicted_prevs.prevalence(sample_name)
ae.append(qp.error.ae(true_prevalence, pred_prevalence))
rae.append(qp.error.rae(true_prevalence, pred_prevalence, eps=1./(2*sample_size)))
ae = np.asarray(ae)
rae = np.asarray(rae)
if average:
@ -187,21 +228,6 @@ def evaluate_submission(true_prevs: ResultSubmission, predicted_prevs: ResultSub
# r = ResultSubmission(['negative', 'positive'])
# from tqdm import tqdm
# for i in tqdm(range(1000), total=1000):
# r.add(f'dev_sample_{i}.txt', np.asarray([0.5, 0.5]))
# r.dump('./path.csv')
r = ResultSubmission.load('./data/T1A/public/dummy_submission.csv')
t = ResultSubmission.load('./data/T1A/public/dummy_submission (copy).csv')
# print(r.df)
# print(r.get('dev_sample_10.txt'))
print(evaluate_submission(r, t))
# s = ResultSubmission.load('./data/T1A/public/dummy_submission.csv')
#
# print(s)

41
LeQua2022/evaluation.py Normal file
View File

@ -0,0 +1,41 @@
import argparse
import quapy as qp
from data import ResultSubmission, evaluate_submission
import constants
import os
"""
LeQua2022 Official evaluation script
"""
def main(args):
if args.task in {'T1A'}:
qp.environ['SAMPLE_SIZE'] = constants.T1A_SAMPLE_SIZE
true_prev = ResultSubmission.load(args.true_prevalences)
pred_prev = ResultSubmission.load(args.pred_prevalences)
mae, mrae = evaluate_submission(true_prev, pred_prev)
print(f'MAE: {mae:.4f}')
print(f'MRAE: {mrae:.4f}')
if args.output is not None:
outdir = os.path.dirname(args.output)
if outdir:
os.makedirs(outdir, exist_ok=True)
with open(args.output, 'wt') as foo:
foo.write(f'MAE: {mae:.4f}\n')
foo.write(f'MRAE: {mrae:.4f}\n')
if __name__=='__main__':
parser = argparse.ArgumentParser(description='LeQua2022 official evaluation script')
parser.add_argument('task', metavar='TASK', type=str, choices=['T1A', 'T1B', 'T2A', 'T2B'],
help='Task name (T1A, T1B, T2A, T2B)')
parser.add_argument('true_prevalences', metavar='TRUE-PREV-PATH', type=str,
help='Path of ground truth prevalence values file (.csv)')
parser.add_argument('pred_prevalences', metavar='PRED-PREV-PATH', type=str,
help='Path of predicted prevalence values file (.csv)')
parser.add_argument('--output', metavar='SCORES-PATH', type=str, default=None,
help='Path where to store the evaluation scores')
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,27 @@
import argparse
import quapy as qp
from data import ResultSubmission, evaluate_submission
import constants
import os
"""
LeQua2022 Official format-checker script
"""
def main(args):
try:
ResultSubmission.check_file_format(args.prevalence_file)
except Exception as e:
print(e)
print('Format check: not passed')
else:
print('Format check: passed')
if __name__=='__main__':
parser = argparse.ArgumentParser(description='LeQua2022 official format-checker script')
parser.add_argument('prevalence_file', metavar='PREV-PATH', type=str,
help='Path of the file containing prevalence values to check')
args = parser.parse_args()
main(args)

View File

@ -9,64 +9,44 @@ import quapy as qp
from quapy.data import LabelledCollection
from quapy.method.aggregative import *
import quapy.functional as F
from data import load_binary_vectors
from data import *
import os
import constants
path_binary_vector = './data/T1A'
result_path = os.path.join('results', 'T1A') # binary - vector
os.makedirs(result_path, exist_ok=True)
predictions_path = os.path.join('predictions', 'T1A') # binary - vector
os.makedirs(predictions_path, exist_ok=True)
train_file = os.path.join(path_binary_vector, 'public', 'training_vectors.txt')
train = LabelledCollection.load(train_file, load_binary_vectors)
pathT1A = './data/T1A/public'
T1A_devvectors_path = os.path.join(pathT1A, 'dev_vectors')
T1A_devprevalence_path = os.path.join(pathT1A, 'dev_prevalences.csv')
T1A_trainpath = os.path.join(pathT1A, 'training_vectors.txt')
train = LabelledCollection.load(T1A_trainpath, load_binary_vectors)
nF = train.instances.shape[1]
qp.environ['SAMPLE_SIZE'] = constants.T1A_SAMPLE_SIZE
print(f'number of classes: {len(train.classes_)}')
print(f'number of training documents: {len(train)}')
print(f'training prevalence: {F.strprev(train.prevalence())}')
print(f'training matrix shape: {train.instances.shape}')
dev_prev = pd.read_csv(os.path.join(path_binary_vector, 'public', 'dev_prevalences.csv'), index_col=0)
print(dev_prev)
true_prevalence = ResultSubmission.load(T1A_devprevalence_path)
scores = {}
for quantifier in [CC]: #, ACC, PCC, PACC, EMQ, HDy]:
for quantifier in [CC, ACC, PCC, PACC, EMQ, HDy]:
classifier = CalibratedClassifierCV(LogisticRegression())
model = quantifier(classifier).fit(train)
quantifier_name = model.__class__.__name__
scores[quantifier_name]={}
for sample_set, sample_size in [('dev', 1000)]:
ae_errors, rae_errors = [], []
for i, row in tqdm(dev_prev.iterrows(), total=len(dev_prev), desc=f'testing {quantifier_name} in {sample_set}'):
filename = row['filename']
prev_true = row[1:].values
sample_path = os.path.join(path_binary_vector, 'public', f'{sample_set}_vectors', filename)
sample, _ = load_binary_vectors(sample_path, nF)
qp.environ['SAMPLE_SIZE'] = sample.shape[0]
prev_estim = model.quantify(sample)
# prev_true = sample.prevalence()
ae_errors.append(qp.error.mae(prev_true, prev_estim))
rae_errors.append(qp.error.mrae(prev_true, prev_estim))
ae_errors = np.asarray(ae_errors)
rae_errors = np.asarray(rae_errors)
mae = ae_errors.mean()
mrae = rae_errors.mean()
scores[quantifier_name][sample_set] = {'mae': mae, 'mrae': mrae}
pickle.dump(ae_errors, open(os.path.join(result_path, f'{quantifier_name}.{sample_set}.ae.pickle'), 'wb'), pickle.HIGHEST_PROTOCOL)
pickle.dump(rae_errors, open(os.path.join(result_path, f'{quantifier_name}.{sample_set}.rae.pickle'), 'wb'), pickle.HIGHEST_PROTOCOL)
print(f'{quantifier_name} {sample_set} MAE={mae:.4f}')
print(f'{quantifier_name} {sample_set} MRAE={mrae:.4f}')
for model in scores:
for sample_set in ['validation']:#, 'test']:
print(f'{model}\t{scores[model][sample_set]["mae"]:.4f}\t{scores[model][sample_set]["mrae"]:.4f}')
predictions = ResultSubmission(categories=['negative', 'positive'])
for samplename, sample in tqdm(gen_load_samples_T1A(T1A_devvectors_path, nF),
desc=quantifier_name, total=len(true_prevalence)):
predictions.add(samplename, model.quantify(sample))
predictions.dump(os.path.join(predictions_path, quantifier_name + '.csv'))
mae, mrae = evaluate_submission(true_prevalence, predictions)
print(f'{quantifier_name} mae={mae:.3f} mrae={mrae:.3f}')
"""
test:

View File

@ -149,7 +149,7 @@ class IndexTransformer:
def index(self, documents):
vocab = self.vocabulary_.copy()
return [[vocab.get(word, self.unk) for word in self.analyzer(doc)] for doc in tqdm(documents, 'indexing')]
return [[vocab.prevalence(word, self.unk) for word in self.analyzer(doc)] for doc in tqdm(documents, 'indexing')]
def fit_transform(self, X, n_jobs=-1):
return self.fit(X).transform(X, n_jobs=n_jobs)