diff --git a/TweetSentQuant/gen_plots.py b/TweetSentQuant/gen_plots.py index 4952999..ca5015a 100644 --- a/TweetSentQuant/gen_plots.py +++ b/TweetSentQuant/gen_plots.py @@ -33,6 +33,12 @@ def plot_error_by_drift(methods, error_name, logscale=False, path=None): if path is not None: path = join(path, f'error_by_drift_{error_name}.{plotext}') method_names, true_prevs, estim_prevs, tr_prevs = gather_results(methods, error_name) + + method_order = ['SVM(AE)' if error_name=='ae' else 'SVM(RAE)', + 'PCC', 'SVM(KLD)', 'SVM(Q)', 'SVM(NKLD)', 'CC', 'HDy', + 'E(PACC)$_\\mathrm{Ptr}$', + 'E(PACC)$_\\mathrm{AE}$' if error_name=='ae' else 'E(PACC)$_\\mathrm{RAE}$', + 'QuaNet', 'PACC', 'ACC', 'SLD'] qp.plot.error_by_drift( method_names, true_prevs, @@ -43,7 +49,8 @@ def plot_error_by_drift(methods, error_name, logscale=False, path=None): show_std=False, logscale=logscale, title=f'Quantification error as a function of distribution shift', - savepath=path + savepath=path, + method_order=method_order ) @@ -52,9 +59,15 @@ def diagonal_plot(methods, error_name, path=None): if path is not None: path = join(path, f'diag_{error_name}') method_names, true_prevs, estim_prevs, tr_prevs = gather_results(methods, error_name) - qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=0, title='Negative', legend=False, show_std=False, savepath=f'{path}_neg.{plotext}') - qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=1, title='Neutral', legend=False, show_std=False, savepath=f'{path}_neu.{plotext}') - qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=2, title='Positive', legend=True, show_std=False, savepath=f'{path}_pos.{plotext}') + method_order = ['SVM(AE)' if error_name == 'ae' else 'SVM(RAE)', + 'PCC', 'SVM(KLD)', 'SVM(Q)', 'SVM(NKLD)', 'CC', 'HDy', + 'E(PACC)$_\\mathrm{Ptr}$', + 'E(PACC)$_\\mathrm{AE}$' if error_name == 'ae' else 'E(PACC)$_\\mathrm{RAE}$', + 'QuaNet', 'PACC', 'ACC', 'SLD'] + qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=0, title='Negative', legend=False, show_std=False, savepath=f'{path}_neg.{plotext}', method_order=method_order) + qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=1, title='Neutral', legend=False, show_std=False, savepath=f'{path}_neu.{plotext}', method_order=method_order) + qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=2, title='Positive', legend=False, show_std=False, savepath=f'{path}_pos.{plotext}', method_order=method_order) + qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=2, title='Positive', legend=True, show_std=False, savepath=f'{path}_pos.legend.{plotext}', method_order=method_order) def binary_bias_global(methods, error_name, path=None): @@ -81,15 +94,15 @@ gao_seb_methods = ['cc', 'acc', 'pcc', 'pacc', 'sld', 'svmq', 'svmkld', 'svmnkld new_methods_ae = ['svmmae' , 'epaccmaeptr', 'epaccmaemae', 'hdy', 'quanet'] new_methods_rae = ['svmmrae' , 'epaccmraeptr', 'epaccmraemrae', 'hdy', 'quanet'] -plot_error_by_drift(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir) -plot_error_by_drift(gao_seb_methods+new_methods_rae, error_name='rae', logscale=True, path=plotdir) +# plot_error_by_drift(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir) +# plot_error_by_drift(gao_seb_methods+new_methods_rae, error_name='rae', logscale=True, path=plotdir) diagonal_plot(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir) diagonal_plot(gao_seb_methods+new_methods_rae, error_name='rae', path=plotdir) -binary_bias_global(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir) -binary_bias_global(gao_seb_methods+new_methods_rae, error_name='rae', path=plotdir) - +# binary_bias_global(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir) +# binary_bias_global(gao_seb_methods+new_methods_rae, error_name='rae', path=plotdir) +# #binary_bias_bins(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir) #binary_bias_bins(gao_seb_methods+new_methods_rae, error_name='rae', path=plotdir) diff --git a/TweetSentQuant/gen_tables.py b/TweetSentQuant/gen_tables.py index 585c453..e897d56 100644 --- a/TweetSentQuant/gen_tables.py +++ b/TweetSentQuant/gen_tables.py @@ -74,7 +74,7 @@ if __name__ == '__main__': \\resizebox{\\textwidth}{!}{% \\begin{tabular}{|c||""" + ('c|' * nold_methods) + '|' + ('c|' * nnew_methods) + """} \hline & \multicolumn{""" + str(nold_methods) + """}{c||}{Methods tested in~\cite{Gao:2016uq}} & - \multicolumn{""" + str(nnew_methods) + """}{c|}{} \\\\ \hline + \multicolumn{""" + str(nnew_methods) + """}{c|}{Newly added methods} \\\\ \hline """ rowreplace={dataset: nicename(dataset) for dataset in datasets} colreplace={method: nicename(method, eval_name, side=True) for method in methods} diff --git a/quapy/plot.py b/quapy/plot.py index 0f5a0aa..90f92e3 100644 --- a/quapy/plot.py +++ b/quapy/plot.py @@ -13,7 +13,7 @@ plt.rcParams['font.size'] = 16 def binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=1, title=None, show_std=True, legend=True, - train_prev=None, savepath=None): + train_prev=None, savepath=None, method_order=None): fig, ax = plt.subplots() ax.set_aspect('equal') ax.grid() @@ -21,7 +21,15 @@ def binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=1, title=No method_names, true_prevs, estim_prevs = _merge(method_names, true_prevs, estim_prevs) - for method, true_prev, estim_prev in zip(method_names, true_prevs, estim_prevs): + order = list(zip(method_names, true_prevs, estim_prevs)) + if method_order is not None: + table = {method_name:[true_prev, estim_prev] for method_name, true_prev, estim_prev in order} + order = [(method_name, *table[method_name]) for method_name in method_order] + + cm = plt.get_cmap('tab20') + NUM_COLORS = len(method_names) + ax.set_prop_cycle(color=[cm(1. * i / NUM_COLORS) for i in range(NUM_COLORS)]) + for method, true_prev, estim_prev in order: true_prev = true_prev[:,pos_class] estim_prev = estim_prev[:,pos_class] @@ -44,8 +52,12 @@ def binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=1, title=No if legend: box = ax.get_position() - ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) - ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) + # ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) + # ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) + # ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) + ax.legend(loc='lower center', + bbox_to_anchor=(1, -0.5), + ncol=(len(method_names)+1)//2) save_or_show(savepath) @@ -161,7 +173,8 @@ def _merge(method_names, true_prevs, estim_prevs): def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, n_bins=20, error_name='ae', show_std=True, logscale=False, title=f'Quantification error as a function of distribution shift', - savepath=None): + savepath=None, + method_order=None): fig, ax = plt.subplots() ax.grid() @@ -171,7 +184,8 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, n_bins=20, e # join all data, and keep the order in which the methods appeared for the first time data = defaultdict(lambda:{'x':np.empty(shape=(0)), 'y':np.empty(shape=(0))}) - method_order = [] + if method_order is None: + method_order = [] for method, test_prevs_i, estim_prevs_i, tr_prev_i in zip(method_names, true_prevs, estim_prevs, tr_prevs): tr_prev_i = np.repeat(tr_prev_i.reshape(1,-1), repeats=test_prevs_i.shape[0], axis=0) @@ -184,10 +198,15 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, n_bins=20, e if method not in method_order: method_order.append(method) + print(method_order) bins = np.linspace(0, 1, n_bins+1) binwidth = 1 / n_bins min_x, max_x = None, None - for method in method_order: + min_y, max_y = None, None + cm = plt.get_cmap('tab20') + NUM_COLORS = len(method_order) + ax.set_prop_cycle(color=[cm(1. * i / NUM_COLORS) for i in range(NUM_COLORS)]) + for i,method in enumerate(method_order): tr_test_drifts = data[method]['x'] method_drifts = data[method]['y'] if logscale: @@ -198,7 +217,7 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, n_bins=20, e for ind in range(len(bins)): selected = inds==ind if selected.sum() > 0: - xs.append(ind*binwidth) + xs.append(ind*binwidth-binwidth/2) ys.append(np.mean(method_drifts[selected])) ystds.append(np.std(method_drifts[selected])) @@ -207,10 +226,14 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, n_bins=20, e ystds = np.asarray(ystds) min_x_method, max_x_method = xs.min(), xs.max() + min_y_method, max_y_method = ys.min(), ys.max() min_x = min_x_method if min_x is None or min_x_method < min_x else min_x max_x = max_x_method if max_x is None or max_x_method > max_x else max_x + min_y = min_y_method if min_y is None or min_y_method < min_y else min_y + max_y = max_y_method if max_y is None or max_y_method > max_y else max_y - ax.errorbar(xs, ys, fmt='-', marker='o', label=method, markersize=3, zorder=2) + marker = 'o' #if i < 10 else '^' + ax.errorbar(xs, ys, fmt='-', marker=marker, label=method, markersize=6, zorder=2, linewidth=2.5) if show_std: ax.fill_between(xs, ys-ystds, ys+ystds, alpha=0.25) @@ -221,6 +244,8 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, n_bins=20, e ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) ax.set_xlim(min_x, max_x) + ax.fill_between([0.02, 0.1055], min_y, max_y, + facecolor='green', alpha=0.25) save_or_show(savepath)