1
0
Fork 0

setting a timeout for model_selection combinations in order to prevent some combinations to stuck the model selection

This commit is contained in:
Alejandro Moreo Fernandez 2021-01-15 17:42:19 +01:00
parent 43ed808945
commit 865dafaefc
6 changed files with 52 additions and 34 deletions

View File

@ -7,7 +7,6 @@ import os
import pickle import pickle
import itertools import itertools
from joblib import Parallel, delayed from joblib import Parallel, delayed
import multiprocessing
import settings import settings
@ -78,6 +77,7 @@ def run(experiment):
return return
else: else:
print(f'running dataset={dataset_name} model={model_name} loss={optim_loss}') print(f'running dataset={dataset_name} model={model_name} loss={optim_loss}')
return
benchmark_devel = qp.datasets.fetch_twitter(dataset_name, for_model_selection=True, min_df=5, pickle=True) benchmark_devel = qp.datasets.fetch_twitter(dataset_name, for_model_selection=True, min_df=5, pickle=True)
benchmark_devel.stats() benchmark_devel.stats()
@ -91,6 +91,7 @@ def run(experiment):
n_repetitions=5, n_repetitions=5,
error=optim_loss, error=optim_loss,
refit=False, refit=False,
timeout=60*60,
verbose=True verbose=True
) )
model_selection.fit(benchmark_devel.training, benchmark_devel.test) model_selection.fit(benchmark_devel.training, benchmark_devel.test)

View File

@ -144,7 +144,6 @@ for i, eval_func in enumerate(evaluation_measures):
save_table(f'./tables/tab_results_{eval_name}.new.tex', tabular) save_table(f'./tables/tab_results_{eval_name}.new.tex', tabular)
# Tables ranks for AE and RAE (two tables) # Tables ranks for AE and RAE (two tables)
# ---------------------------------------------------- # ----------------------------------------------------
methods = gao_seb_methods methods = gao_seb_methods

View File

@ -95,11 +95,6 @@ class Table:
normval = 1 - normval normval = 1 - normval
self.map['color'][i, col_idx] = color_red2green_01(normval) self.map['color'][i, col_idx] = color_red2green_01(normval)
def _addlatex(self):
return
for i,j in self._getfilled():
self.map['latex'][i,j] = self.latex(self.rows[i], self.cols[j])
def _run_ttest(self, row, col1, col2): def _run_ttest(self, row, col1, col2):
mean1 = self.map['mean'][row, col1] mean1 = self.map['mean'][row, col1]
@ -153,7 +148,6 @@ class Table:
self._addrank() self._addrank()
self._addcolor() self._addcolor()
self._addttest() self._addttest()
self._addlatex()
if self.add_average: if self.add_average:
self._addave() self._addave()
self.modif = False self.modif = False

View File

@ -20,4 +20,4 @@ environ = {
def isbinary(x): def isbinary(x):
return data.isbinary(x) or method.isbinary(x) return x.binary

View File

@ -6,6 +6,7 @@ from method.aggregative import BaseQuantifier
from typing import Union, Callable from typing import Union, Callable
import functional as F import functional as F
from copy import deepcopy from copy import deepcopy
import signal
class GridSearchQ(BaseQuantifier): class GridSearchQ(BaseQuantifier):
@ -21,6 +22,7 @@ class GridSearchQ(BaseQuantifier):
refit=False, refit=False,
n_jobs=-1, n_jobs=-1,
random_seed=42, random_seed=42,
timeout=-1,
verbose=False): verbose=False):
""" """
Optimizes the hyperparameters of a quantification method, based on an evaluation method and on an evaluation Optimizes the hyperparameters of a quantification method, based on an evaluation method and on an evaluation
@ -48,6 +50,9 @@ class GridSearchQ(BaseQuantifier):
the best chosen hyperparameter combination the best chosen hyperparameter combination
:param n_jobs: number of parallel jobs :param n_jobs: number of parallel jobs
:param random_seed: set the seed of the random generator to replicate experiments :param random_seed: set the seed of the random generator to replicate experiments
:param timeout: establishes a timer (in seconds) for each of the hyperparameters configurations being tested.
Whenever a run takes longer than this timer, that configuration will be ignored. If all configurations end up
being ignored, a TimeoutError exception is raised. If -1 (default) then no time bound is set.
:param verbose: set to True to get information through the stdout :param verbose: set to True to get information through the stdout
""" """
self.model = model self.model = model
@ -59,8 +64,8 @@ class GridSearchQ(BaseQuantifier):
self.refit = refit self.refit = refit
self.n_jobs = n_jobs self.n_jobs = n_jobs
self.random_seed = random_seed self.random_seed = random_seed
self.timeout = timeout
self.verbose = verbose self.verbose = verbose
self.__check_error(error) self.__check_error(error)
def sout(self, msg): def sout(self, msg):
@ -129,12 +134,23 @@ class GridSearchQ(BaseQuantifier):
model = self.model model = self.model
n_jobs = self.n_jobs n_jobs = self.n_jobs
if self.timeout > 0:
def handler(signum, frame):
self.sout('timeout reached')
raise TimeoutError()
signal.signal(signal.SIGALRM, handler)
self.sout(f'starting optimization with n_jobs={n_jobs}') self.sout(f'starting optimization with n_jobs={n_jobs}')
self.param_scores_ = {} self.param_scores_ = {}
self.best_score_ = None self.best_score_ = None
some_timeouts = False
for values in itertools.product(*params_values): for values in itertools.product(*params_values):
params = {k: values[i] for i, k in enumerate(params_keys)} params = {k: values[i] for i, k in enumerate(params_keys)}
if self.timeout > 0:
signal.alarm(self.timeout)
try:
# overrides default parameters with the parameters being explored at this iteration # overrides default parameters with the parameters being explored at this iteration
model.set_params(**params) model.set_params(**params)
model.fit(training) model.fit(training)
@ -152,6 +168,15 @@ class GridSearchQ(BaseQuantifier):
self.best_model_ = deepcopy(model) self.best_model_ = deepcopy(model)
self.param_scores_[str(params)] = score self.param_scores_[str(params)] = score
if self.timeout > 0:
signal.alarm(0)
except TimeoutError:
print(f'timeout reached for config {params}')
some_timeouts = True
if self.best_score_ is None and some_timeouts:
raise TimeoutError('all jobs took more than the timeout time to end')
self.sout(f'optimization finished: best params {self.best_params_} (score={self.best_score_:.5f})') self.sout(f'optimization finished: best params {self.best_params_} (score={self.best_score_:.5f})')
model.set_params(**self.best_params_) model.set_params(**self.best_params_)
self.best_model_ = deepcopy(model) self.best_model_ = deepcopy(model)

17
test.py
View File

@ -20,7 +20,7 @@ param_grid = {'C': np.logspace(0,3,4), 'class_weight': ['balanced']}
max_evaluations = 5000 max_evaluations = 5000
sample_size = qp.environ['SAMPLE_SIZE'] sample_size = qp.environ['SAMPLE_SIZE']
binary = True binary = False
svmperf_home = './svm_perf_quantification' svmperf_home = './svm_perf_quantification'
if binary: if binary:
@ -29,7 +29,7 @@ if binary:
else: else:
dataset = qp.datasets.fetch_twitter('hcr', for_model_selection=False, min_df=10, pickle=True) dataset = qp.datasets.fetch_twitter('hcr', for_model_selection=False, min_df=10, pickle=True)
dataset.training = dataset.training.sampling(sample_size, 0.2, 0.5, 0.3) #dataset.training = dataset.training.sampling(sample_size, 0.2, 0.5, 0.3)
print(f'dataset loaded: #training={len(dataset.training)} #test={len(dataset.test)}') print(f'dataset loaded: #training={len(dataset.training)} #test={len(dataset.test)}')
@ -52,14 +52,15 @@ print(f'dataset loaded: #training={len(dataset.training)} #test={len(dataset.tes
#learner = GridSearchCV(LogisticRegression(max_iter=1000), param_grid=param_grid, n_jobs=-1, verbose=1) #learner = GridSearchCV(LogisticRegression(max_iter=1000), param_grid=param_grid, n_jobs=-1, verbose=1)
learner = LogisticRegression(max_iter=1000) learner = LogisticRegression(max_iter=1000)
model = qp.method.meta.ECC(learner, size=20, red_size=10, param_grid=None, optim=None, policy='ds') model = qp.method.aggregative.ClassifyAndCount(learner)
#model = qp.method.meta.ECC(learner, size=20, red_size=10, param_grid=None, optim=None, policy='ds')
#model = qp.method.meta.EHDy(learner, param_grid=param_grid, optim='mae', #model = qp.method.meta.EHDy(learner, param_grid=param_grid, optim='mae',
# sample_size=sample_size, eval_budget=max_evaluations//10, n_jobs=-1) # sample_size=sample_size, eval_budget=max_evaluations//10, n_jobs=-1)
#model = qp.method.aggregative.ClassifyAndCount(learner) #model = qp.method.aggregative.ClassifyAndCount(learner)
#if qp.isbinary(model) and not qp.isbinary(dataset): if qp.isbinary(model) and not qp.isbinary(dataset):
# model = qp.method.aggregative.OneVsAll(model) model = qp.method.aggregative.OneVsAll(model)
# Model fit and Evaluation on the test data # Model fit and Evaluation on the test data
@ -91,7 +92,6 @@ print(f'mae={error:.3f}')
# Model fit and Evaluation according to the artificial sampling protocol # Model fit and Evaluation according to the artificial sampling protocol
# ---------------------------------------------------------------------------- # ----------------------------------------------------------------------------
n_prevpoints = F.get_nprevpoints_approximation(combinations_budget=max_evaluations, n_classes=dataset.n_classes) n_prevpoints = F.get_nprevpoints_approximation(combinations_budget=max_evaluations, n_classes=dataset.n_classes)
n_evaluations = F.num_prevalence_combinations(n_prevpoints, dataset.n_classes) n_evaluations = F.num_prevalence_combinations(n_prevpoints, dataset.n_classes)
print(f'the prevalence interval [0,1] will be split in {n_prevpoints} prevalence points for each class, so that\n' print(f'the prevalence interval [0,1] will be split in {n_prevpoints} prevalence points for each class, so that\n'
@ -109,8 +109,6 @@ for error in qp.error.QUANTIFICATION_ERROR:
# Model selection and Evaluation according to the artificial sampling protocol # Model selection and Evaluation according to the artificial sampling protocol
# ---------------------------------------------------------------------------- # ----------------------------------------------------------------------------
sys.exit(0)
model_selection = GridSearchQ(model, model_selection = GridSearchQ(model,
param_grid=param_grid, param_grid=param_grid,
@ -118,7 +116,8 @@ model_selection = GridSearchQ(model,
eval_budget=max_evaluations//10, eval_budget=max_evaluations//10,
error='mae', error='mae',
refit=True, refit=True,
verbose=True) verbose=True,
timeout=4)
model = model_selection.fit(dataset.training, validation=0.3) model = model_selection.fit(dataset.training, validation=0.3)
#model = model_selection.fit(train, validation=val) #model = model_selection.fit(train, validation=val)