forked from moreo/QuaPy
refactoring aggregative
This commit is contained in:
parent
2d12ce12b9
commit
6d53b68d7f
|
@ -130,3 +130,31 @@ dmypy.json
|
|||
.pyre/
|
||||
|
||||
*__pycache__*
|
||||
*.pdf
|
||||
*.zip
|
||||
*.png
|
||||
*.csv
|
||||
*.pkl
|
||||
*.dataframe
|
||||
|
||||
|
||||
# other projects
|
||||
LeQua2022
|
||||
MultiLabel
|
||||
NewMethods
|
||||
Ordinal
|
||||
Retrieval
|
||||
eDiscovery
|
||||
poster-cikm
|
||||
slides-cikm
|
||||
slides-short-cikm
|
||||
quick_experiment
|
||||
svm_perf_quantification/svm_struct
|
||||
svm_perf_quantification/svm_light
|
||||
TweetSentQuant
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -302,36 +302,20 @@ class AggregativeSoftQuantifier(AggregativeQuantifier, ABC):
|
|||
f'fit_classifier is set to False')
|
||||
|
||||
|
||||
class BinaryAggregativeQuantifier(AggregativeQuantifier, BinaryQuantifier):
|
||||
|
||||
@property
|
||||
def pos_label(self):
|
||||
return self.classifier.classes_[1]
|
||||
|
||||
@property
|
||||
def neg_label(self):
|
||||
return self.classifier.classes_[0]
|
||||
|
||||
def fit(self, data: LabelledCollection, fit_classifier=True, val_split=None):
|
||||
self._check_binary(data, self.__class__.__name__)
|
||||
return super().fit(data, fit_classifier, val_split)
|
||||
|
||||
# class CorrectionbasedAggregativeQuantifier(AggregativeQuantifier):
|
||||
# """
|
||||
# Abstract class for quantification methods that carry out an adjustment (or correction) that requires,
|
||||
# at training time, the predictions to be issued in validation mode, i.e., on a set of held-out data that
|
||||
# is not the training set. There are three ways in which this distinction can be made, depending on how
|
||||
# the internal parameter `val_split` is specified, namely, (i) a float in (0, 1) indicating the proportion
|
||||
# of training instances that should be devoted to validate, or (ii) an integer indicating the
|
||||
# number of folds to consider in a k-fold cross-validation mode, or (iii) the specific set of data to
|
||||
# use for validation.
|
||||
# """
|
||||
#
|
||||
# @property
|
||||
# def val_split(self):
|
||||
# return self.val_split_
|
||||
#
|
||||
# @val_split.setter
|
||||
# def val_split(self, val_split):
|
||||
# if isinstance(val_split, LabelledCollection):
|
||||
# print('warning: setting val_split with a LabelledCollection will be inefficient in'
|
||||
# 'model selection. Rather pass the LabelledCollection at fit time')
|
||||
# self.val_split_ = val_split
|
||||
#
|
||||
# def fit(self, data: LabelledCollection, fit_classifier=True, predict_on=None):
|
||||
# print('method from CorrectionbasedAggregativeQuantifier')
|
||||
# if predict_on is None:
|
||||
# predict_on = self.val_split
|
||||
# classif_predictions = self.classifier_fit_predict(data, fit_classifier, predict_on)
|
||||
# self.aggregation_fit(classif_predictions, data)
|
||||
# return self
|
||||
|
||||
|
||||
|
||||
|
@ -383,7 +367,7 @@ class ACC(AggregativeCrispQuantifier):
|
|||
:param n_jobs: number of parallel workers
|
||||
"""
|
||||
|
||||
def __init__(self, classifier: BaseEstimator, val_split=0.4, n_jobs=None):
|
||||
def __init__(self, classifier: BaseEstimator, val_split=5, n_jobs=None):
|
||||
self.classifier = classifier
|
||||
self.val_split = val_split
|
||||
self.n_jobs = qp._get_njobs(n_jobs)
|
||||
|
@ -476,7 +460,7 @@ class PACC(AggregativeSoftQuantifier):
|
|||
:param n_jobs: number of parallel workers
|
||||
"""
|
||||
|
||||
def __init__(self, classifier: BaseEstimator, val_split=0.4, n_jobs=None):
|
||||
def __init__(self, classifier: BaseEstimator, val_split=5, n_jobs=None):
|
||||
self.classifier = classifier
|
||||
self.val_split = val_split
|
||||
self.n_jobs = qp._get_njobs(n_jobs)
|
||||
|
@ -599,7 +583,7 @@ class EMQrecalib(AggregativeSoftQuantifier):
|
|||
can be made as float in (0, 1) indicating the proportion of stratified held-out validation set to
|
||||
be extracted from the training set (default 0.4); or as an integer, indicating that the predictions
|
||||
are to be generated in a `k`-fold cross-validation manner (with this integer indicating the value
|
||||
for `k`); or as a collection defining the specific set of data to use for validation.
|
||||
for `k`, default 5); or as a collection defining the specific set of data to use for validation.
|
||||
Alternatively, this set can be specified at fit time by indicating the exact set of data
|
||||
on which the predictions are to be generated.
|
||||
:param exact_train_prev: set to True (default) for using, as the initial observation, the true training prevalence;
|
||||
|
@ -671,7 +655,7 @@ class EMQrecalib(AggregativeSoftQuantifier):
|
|||
return posteriors
|
||||
|
||||
|
||||
class HDy(AggregativeSoftQuantifier, BinaryQuantifier):
|
||||
class HDy(AggregativeSoftQuantifier, BinaryAggregativeQuantifier):
|
||||
"""
|
||||
`Hellinger Distance y <https://www.sciencedirect.com/science/article/pii/S0020025512004069>`_ (HDy).
|
||||
HDy is a probabilistic method for training binary quantifiers, that models quantification as the problem of
|
||||
|
@ -683,10 +667,10 @@ class HDy(AggregativeSoftQuantifier, BinaryQuantifier):
|
|||
|
||||
:param classifier: a sklearn's Estimator that generates a binary classifier
|
||||
:param val_split: a float in range (0,1) indicating the proportion of data to be used as a stratified held-out
|
||||
validation distribution, or a :class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
validation distribution, or a :class:`quapy.data.base.LabelledCollection` (the split itself), or an integer indicating the number of folds (default 5)..
|
||||
"""
|
||||
|
||||
def __init__(self, classifier: BaseEstimator, val_split=0.4):
|
||||
def __init__(self, classifier: BaseEstimator, val_split=5):
|
||||
self.classifier = classifier
|
||||
self.val_split = val_split
|
||||
|
||||
|
@ -701,12 +685,10 @@ class HDy(AggregativeSoftQuantifier, BinaryQuantifier):
|
|||
:class:`quapy.data.base.LabelledCollection` indicating the validation set itself
|
||||
:return: self
|
||||
"""
|
||||
|
||||
self._check_binary(data, self.__class__.__name__)
|
||||
P, y = classif_predictions.Xy
|
||||
Px = P[:, 1] # takes only the P(y=+1|x)
|
||||
self.Pxy1 = Px[y == self.classifier.classes_[1]]
|
||||
self.Pxy0 = Px[y == self.classifier.classes_[0]]
|
||||
Px = P[:, self.pos_label] # takes only the P(y=+1|x)
|
||||
self.Pxy1 = Px[y == self.pos_label]
|
||||
self.Pxy0 = Px[y == self.neg_label]
|
||||
|
||||
# pre-compute the histogram for positive and negative examples
|
||||
self.bins = np.linspace(10, 110, 11, dtype=int) # [10, 20, 30, ..., 100, 110]
|
||||
|
@ -725,7 +707,7 @@ class HDy(AggregativeSoftQuantifier, BinaryQuantifier):
|
|||
# and the final estimated a priori probability was taken as the median of these 11 estimates."
|
||||
# (González-Castro, et al., 2013).
|
||||
|
||||
Px = classif_posteriors[:, 1] # takes only the P(y=+1|x)
|
||||
Px = classif_posteriors[:, self.pos_label] # takes only the P(y=+1|x)
|
||||
|
||||
prev_estimations = []
|
||||
# for bins in np.linspace(10, 110, 11, dtype=int): #[10, 20, 30, ..., 100, 110]
|
||||
|
@ -752,7 +734,7 @@ class HDy(AggregativeSoftQuantifier, BinaryQuantifier):
|
|||
return np.asarray([1 - class1_prev, class1_prev])
|
||||
|
||||
|
||||
class DyS(AggregativeSoftQuantifier, BinaryQuantifier):
|
||||
class DyS(AggregativeSoftQuantifier, BinaryAggregativeQuantifier):
|
||||
"""
|
||||
`DyS framework <https://ojs.aaai.org/index.php/AAAI/article/view/4376>`_ (DyS).
|
||||
DyS is a generalization of HDy method, using a Ternary Search in order to find the prevalence that
|
||||
|
@ -761,14 +743,14 @@ class DyS(AggregativeSoftQuantifier, BinaryQuantifier):
|
|||
|
||||
:param classifier: a sklearn's Estimator that generates a binary classifier
|
||||
:param val_split: a float in range (0,1) indicating the proportion of data to be used as a stratified held-out
|
||||
validation distribution, or a :class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
validation distribution, or a :class:`quapy.data.base.LabelledCollection` (the split itself), or an integer indicating the number of folds (default 5)..
|
||||
:param n_bins: an int with the number of bins to use to compute the histograms.
|
||||
:param divergence: a str indicating the name of divergence (currently supported ones are "HD" or "topsoe"), or a
|
||||
callable function computes the divergence between two distributions (two equally sized arrays).
|
||||
:param tol: a float with the tolerance for the ternary search algorithm.
|
||||
"""
|
||||
|
||||
def __init__(self, classifier: BaseEstimator, val_split=0.4, n_bins=8, divergence: Union[str, Callable]= 'HD', tol=1e-05):
|
||||
def __init__(self, classifier: BaseEstimator, val_split=5, n_bins=8, divergence: Union[str, Callable]= 'HD', tol=1e-05):
|
||||
self.classifier = classifier
|
||||
self.val_split = val_split
|
||||
self.tol = tol
|
||||
|
@ -791,22 +773,17 @@ class DyS(AggregativeSoftQuantifier, BinaryQuantifier):
|
|||
# Left and right are the current bounds; the maximum is between them
|
||||
return (left + right) / 2
|
||||
|
||||
def fit(self, data: LabelledCollection, fit_classifier=True, val_split: Union[float, LabelledCollection] = None):
|
||||
if val_split is None:
|
||||
val_split = self.val_split
|
||||
|
||||
self._check_binary(data, self.__class__.__name__)
|
||||
self.classifier, validation = _training_helper(
|
||||
self.classifier, data, fit_classifier, ensure_probabilistic=True, val_split=val_split)
|
||||
Px = self.classify(validation.instances)[:, 1] # takes only the P(y=+1|x)
|
||||
self.Pxy1 = Px[validation.labels == self.classifier.classes_[1]]
|
||||
self.Pxy0 = Px[validation.labels == self.classifier.classes_[0]]
|
||||
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
|
||||
Px, y = classif_predictions.Xy
|
||||
Px = Px[:, self.pos_label] # takes only the P(y=+1|x)
|
||||
self.Pxy1 = Px[y == self.pos_label]
|
||||
self.Pxy0 = Px[y == self.neg_label]
|
||||
self.Pxy1_density = np.histogram(self.Pxy1, bins=self.n_bins, range=(0, 1), density=True)[0]
|
||||
self.Pxy0_density = np.histogram(self.Pxy0, bins=self.n_bins, range=(0, 1), density=True)[0]
|
||||
return self
|
||||
|
||||
def aggregate(self, classif_posteriors):
|
||||
Px = classif_posteriors[:, 1] # takes only the P(y=+1|x)
|
||||
Px = classif_posteriors[:, self.pos_label] # takes only the P(y=+1|x)
|
||||
|
||||
Px_test = np.histogram(Px, bins=self.n_bins, range=(0, 1), density=True)[0]
|
||||
divergence = get_divergence(self.divergence)
|
||||
|
@ -819,37 +796,32 @@ class DyS(AggregativeSoftQuantifier, BinaryQuantifier):
|
|||
return np.asarray([1 - class1_prev, class1_prev])
|
||||
|
||||
|
||||
class SMM(AggregativeSoftQuantifier, BinaryQuantifier):
|
||||
class SMM(AggregativeSoftQuantifier, BinaryAggregativeQuantifier):
|
||||
"""
|
||||
`SMM method <https://ieeexplore.ieee.org/document/9260028>`_ (SMM).
|
||||
SMM is a simplification of matching distribution methods where the representation of the examples
|
||||
is created using the mean instead of a histogram.
|
||||
is created using the mean instead of a histogram (conceptually equivalent to PACC).
|
||||
|
||||
:param classifier: a sklearn's Estimator that generates a binary classifier.
|
||||
:param val_split: a float in range (0,1) indicating the proportion of data to be used as a stratified held-out
|
||||
validation distribution, or a :class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
validation distribution, or a :class:`quapy.data.base.LabelledCollection` (the split itself), or an integer indicating the number of folds (default 5)..
|
||||
"""
|
||||
|
||||
def __init__(self, classifier: BaseEstimator, val_split=0.4):
|
||||
def __init__(self, classifier: BaseEstimator, val_split=5):
|
||||
self.classifier = classifier
|
||||
self.val_split = val_split
|
||||
|
||||
def fit(self, data: LabelledCollection, fit_classifier=True, val_split: Union[float, LabelledCollection] = None):
|
||||
if val_split is None:
|
||||
val_split = self.val_split
|
||||
|
||||
self._check_binary(data, self.__class__.__name__)
|
||||
self.classifier, validation = _training_helper(
|
||||
self.classifier, data, fit_classifier, ensure_probabilistic=True, val_split=val_split)
|
||||
Px = self.classify(validation.instances)[:, 1] # takes only the P(y=+1|x)
|
||||
self.Pxy1 = Px[validation.labels == self.classifier.classes_[1]]
|
||||
self.Pxy0 = Px[validation.labels == self.classifier.classes_[0]]
|
||||
self.Pxy1_mean = np.mean(self.Pxy1)
|
||||
self.Pxy0_mean = np.mean(self.Pxy0)
|
||||
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
|
||||
Px, y = classif_predictions.Xy
|
||||
Px = Px[:, self.pos_label] # takes only the P(y=+1|x)
|
||||
self.Pxy1 = Px[y == self.pos_label]
|
||||
self.Pxy0 = Px[y == self.neg_label]
|
||||
self.Pxy1_mean = np.mean(self.Pxy1) # equiv. TPR
|
||||
self.Pxy0_mean = np.mean(self.Pxy0) # equiv. FPR
|
||||
return self
|
||||
|
||||
def aggregate(self, classif_posteriors):
|
||||
Px = classif_posteriors[:, 1] # takes only the P(y=+1|x)
|
||||
Px = classif_posteriors[:, self.pos_label] # takes only the P(y=+1|x)
|
||||
Px_mean = np.mean(Px)
|
||||
|
||||
class1_prev = (Px_mean - self.Pxy0_mean)/(self.Pxy1_mean - self.Pxy0_mean)
|
||||
|
@ -867,9 +839,9 @@ class DMy(AggregativeSoftQuantifier):
|
|||
:param classifier: a `sklearn`'s Estimator that generates a probabilistic classifier
|
||||
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set to model the
|
||||
validation distribution.
|
||||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||||
This parameter can be indicated as a real value (between 0 and 1), representing a proportion of
|
||||
validation data, or as an integer, indicating that the validation distribution should be estimated via
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`, defaults 5), or as a
|
||||
:class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
:param nbins: number of bins used to discretize the distributions (default 8)
|
||||
:param divergence: a string representing a divergence measure (currently, "HD" and "topsoe" are implemented)
|
||||
|
@ -890,7 +862,7 @@ class DMy(AggregativeSoftQuantifier):
|
|||
self.n_jobs = n_jobs
|
||||
|
||||
# @classmethod
|
||||
# def HDy(cls, classifier, val_split=0.4, n_jobs=None):
|
||||
# def HDy(cls, classifier, val_split=5, n_jobs=None):
|
||||
# from quapy.method.meta import MedianEstimator
|
||||
#
|
||||
# hdy = DMy(classifier=classifier, val_split=val_split, search='linear_search', divergence='HD')
|
||||
|
@ -1114,7 +1086,7 @@ def newSVMRAE(svmperf_base=None, C=1):
|
|||
return newELM(svmperf_base, loss='mrae', C=C)
|
||||
|
||||
|
||||
class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier):
|
||||
class ThresholdOptimization(AggregativeSoftQuantifier, BinaryAggregativeQuantifier):
|
||||
"""
|
||||
Abstract class of Threshold Optimization variants for :class:`ACC` as proposed by
|
||||
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
|
||||
|
@ -1127,31 +1099,20 @@ class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier):
|
|||
:param classifier: a sklearn's Estimator that generates a classifier
|
||||
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||||
misclassification rates are to be estimated.
|
||||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||||
This parameter can be indicated as a real value (between 0 and 1), representing a proportion of
|
||||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`, defaults 5), or as a
|
||||
:class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
"""
|
||||
|
||||
def __init__(self, classifier: BaseEstimator, val_split=0.4, n_jobs=None):
|
||||
def __init__(self, classifier: BaseEstimator, val_split=5, n_jobs=None):
|
||||
self.classifier = classifier
|
||||
self.val_split = val_split
|
||||
self.n_jobs = qp._get_njobs(n_jobs)
|
||||
|
||||
def fit(self, data: LabelledCollection, fit_classifier=True, val_split: Union[float, int, LabelledCollection] = None):
|
||||
self._check_binary(data, "Threshold Optimization")
|
||||
|
||||
if val_split is None:
|
||||
val_split = self.val_split
|
||||
|
||||
self.classifier, y, y_, classes, class_count = cross_generate_predictions(
|
||||
data, self.classifier, val_split, probabilistic=True, fit_classifier=fit_classifier, n_jobs=self.n_jobs
|
||||
)
|
||||
|
||||
self.cc = CC(self.classifier)
|
||||
|
||||
self.tpr, self.fpr = self._optimize_threshold(y, y_)
|
||||
|
||||
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
|
||||
P, y = classif_predictions.Xy
|
||||
self.tpr, self.fpr, self.threshold = self._optimize_threshold(y, P)
|
||||
return self
|
||||
|
||||
@abstractmethod
|
||||
|
@ -1173,14 +1134,15 @@ class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier):
|
|||
|
||||
:param y: predicted labels for the validation set (or for the training set via `k`-fold cross validation)
|
||||
:param probabilities: array-like with the posterior probabilities
|
||||
:return: best `tpr` and `fpr` according to `_condition`
|
||||
:return: best `tpr` and `fpr` and `threshold` according to `_condition`
|
||||
"""
|
||||
best_candidate_threshold_score = None
|
||||
best_tpr = 0
|
||||
best_fpr = 0
|
||||
candidate_thresholds = np.unique(probabilities[:, 1])
|
||||
candidate_thresholds = np.unique(probabilities[:, self.pos_label])
|
||||
for candidate_threshold in candidate_thresholds:
|
||||
y_ = [self.classes_[1] if p > candidate_threshold else self.classes_[0] for p in probabilities[:, 1]]
|
||||
y_ = self.classes_[1*(probabilities[:,1]>candidate_threshold)]
|
||||
#y_ = [self.pos_label if p > candidate_threshold else self.neg_label for p in probabilities[:, 1]]
|
||||
TP, FP, FN, TN = self._compute_table(y, y_)
|
||||
tpr = self._compute_tpr(TP, FP)
|
||||
fpr = self._compute_fpr(FP, TN)
|
||||
|
@ -1190,15 +1152,15 @@ class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier):
|
|||
best_tpr = tpr
|
||||
best_fpr = fpr
|
||||
|
||||
return best_tpr, best_fpr
|
||||
return best_tpr, best_fpr, best_candidate_threshold_score
|
||||
|
||||
def aggregate(self, classif_predictions):
|
||||
prevs_estim = self.cc.aggregate(classif_predictions)
|
||||
if self.tpr - self.fpr == 0:
|
||||
class_scores = classif_predictions[:, self.pos_label]
|
||||
prev_estim = np.mean(class_scores > self.threshold)
|
||||
if self.tpr - self.fpr != 0:
|
||||
prevs_estim = np.clip((prev_estim - self.fpr) / (self.tpr - self.fpr), 0, 1)
|
||||
prevs_estim = np.array((1 - prevs_estim, prevs_estim))
|
||||
return prevs_estim
|
||||
adjusted_prevs_estim = np.clip((prevs_estim[1] - self.fpr) / (self.tpr - self.fpr), 0, 1)
|
||||
adjusted_prevs_estim = np.array((1 - adjusted_prevs_estim, adjusted_prevs_estim))
|
||||
return adjusted_prevs_estim
|
||||
|
||||
def _compute_table(self, y, y_):
|
||||
TP = np.logical_and(y == y_, y == self.classes_[1]).sum()
|
||||
|
@ -1229,13 +1191,13 @@ class T50(ThresholdOptimization):
|
|||
:param classifier: a sklearn's Estimator that generates a classifier
|
||||
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||||
misclassification rates are to be estimated.
|
||||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||||
This parameter can be indicated as a real value (between 0 and 1), representing a proportion of
|
||||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`, defaults 5), or as a
|
||||
:class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
"""
|
||||
|
||||
def __init__(self, classifier: BaseEstimator, val_split=0.4):
|
||||
def __init__(self, classifier: BaseEstimator, val_split=5):
|
||||
super().__init__(classifier, val_split)
|
||||
|
||||
def _condition(self, tpr, fpr) -> float:
|
||||
|
@ -1253,13 +1215,13 @@ class MAX(ThresholdOptimization):
|
|||
:param classifier: a sklearn's Estimator that generates a classifier
|
||||
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||||
misclassification rates are to be estimated.
|
||||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||||
This parameter can be indicated as a real value (between 0 and 1), representing a proportion of
|
||||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`, defaults 5), or as a
|
||||
:class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
"""
|
||||
|
||||
def __init__(self, classifier: BaseEstimator, val_split=0.4):
|
||||
def __init__(self, classifier: BaseEstimator, val_split=5):
|
||||
super().__init__(classifier, val_split)
|
||||
|
||||
def _condition(self, tpr, fpr) -> float:
|
||||
|
@ -1278,13 +1240,13 @@ class X(ThresholdOptimization):
|
|||
:param classifier: a sklearn's Estimator that generates a classifier
|
||||
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||||
misclassification rates are to be estimated.
|
||||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||||
This parameter can be indicated as a real value (between 0 and 1), representing a proportion of
|
||||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`, defaults 5), or as a
|
||||
:class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
"""
|
||||
|
||||
def __init__(self, classifier: BaseEstimator, val_split=0.4):
|
||||
def __init__(self, classifier: BaseEstimator, val_split=5):
|
||||
super().__init__(classifier, val_split)
|
||||
|
||||
def _condition(self, tpr, fpr) -> float:
|
||||
|
@ -1302,12 +1264,12 @@ class MS(ThresholdOptimization):
|
|||
:param classifier: a sklearn's Estimator that generates a classifier
|
||||
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||||
misclassification rates are to be estimated.
|
||||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||||
This parameter can be indicated as a real value (between 0 and 1), representing a proportion of
|
||||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`, defaults 5), or as a
|
||||
:class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
"""
|
||||
def __init__(self, classifier: BaseEstimator, val_split=0.4):
|
||||
def __init__(self, classifier: BaseEstimator, val_split=5):
|
||||
super().__init__(classifier, val_split)
|
||||
|
||||
def _condition(self, tpr, fpr) -> float:
|
||||
|
@ -1339,12 +1301,12 @@ class MS2(MS):
|
|||
:param classifier: a sklearn's Estimator that generates a classifier
|
||||
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||||
misclassification rates are to be estimated.
|
||||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||||
This parameter can be indicated as a real value (between 0 and 1), representing a proportion of
|
||||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`, defaults 5), or as a
|
||||
:class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
"""
|
||||
def __init__(self, classifier: BaseEstimator, val_split=0.4):
|
||||
def __init__(self, classifier: BaseEstimator, val_split=5):
|
||||
super().__init__(classifier, val_split)
|
||||
|
||||
def _optimize_threshold(self, y, probabilities):
|
||||
|
|
Loading…
Reference in New Issue