forked from moreo/QuaPy
region-based method
This commit is contained in:
parent
3aed410722
commit
4d4cf6eb3f
|
@ -0,0 +1,221 @@
|
||||||
|
from typing import Union
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.base import BaseEstimator, clone
|
||||||
|
from sklearn.cluster import KMeans, OPTICS
|
||||||
|
from sklearn.decomposition import TruncatedSVD
|
||||||
|
from sklearn.mixture import GaussianMixture
|
||||||
|
from quapy.method.base import BaseQuantifier, BinaryQuantifier
|
||||||
|
from quapy.data import LabelledCollection
|
||||||
|
from quapy.method.aggregative import ACC, PACC
|
||||||
|
|
||||||
|
|
||||||
|
class RegionAdjustment(ACC):
|
||||||
|
|
||||||
|
def __init__(self, learner: BaseEstimator, val_split=0.4, k=2):
|
||||||
|
self.learner = learner
|
||||||
|
self.val_split = val_split
|
||||||
|
# lets say k is the number of regions (here: clusters of k-means) for each class
|
||||||
|
self.k = k
|
||||||
|
|
||||||
|
def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, int, LabelledCollection] = None):
|
||||||
|
X, y = data.Xy
|
||||||
|
Xp, Xn = X[y==1], X[y==0]
|
||||||
|
kmeans = KMeans(n_clusters=self.k)
|
||||||
|
rn = kmeans.fit_predict(Xn) # regions negative
|
||||||
|
rp = kmeans.fit_predict(Xp)+self.k # regions positive
|
||||||
|
classes = np.arange(self.k*2)
|
||||||
|
pos = LabelledCollection(Xp, rp, classes_=classes)
|
||||||
|
neg = LabelledCollection(Xn, rn, classes_=classes)
|
||||||
|
region_data = pos + neg
|
||||||
|
super(RegionAdjustment, self).fit(region_data, fit_learner, val_split)
|
||||||
|
self.reg2class = {r:(0 if r < self.k else 1) for r in range(2*self.k)}
|
||||||
|
return self
|
||||||
|
|
||||||
|
def classify(self, data):
|
||||||
|
regions = super(RegionAdjustment, self).classify(data)
|
||||||
|
return regions
|
||||||
|
|
||||||
|
def aggregate(self, classif_predictions):
|
||||||
|
region_prevalence = super(RegionAdjustment, self).aggregate(classif_predictions)
|
||||||
|
bin_prevalence = np.zeros(shape=2, dtype=np.float)
|
||||||
|
for r, prev in enumerate(region_prevalence):
|
||||||
|
bin_prevalence[self.reg2class[r]] += prev
|
||||||
|
return bin_prevalence
|
||||||
|
|
||||||
|
|
||||||
|
class RegionProbAdjustment(PACC):
|
||||||
|
|
||||||
|
def __init__(self, learner: BaseEstimator, val_split=0.4, k=2):
|
||||||
|
self.learner = learner
|
||||||
|
self.val_split = val_split
|
||||||
|
# lets say k is the number of regions (here: clusters of k-means) for all classes
|
||||||
|
self.k = k
|
||||||
|
|
||||||
|
def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, int, LabelledCollection] = None):
|
||||||
|
X, y = data.Xy
|
||||||
|
Xp, Xn = X[y==1], X[y==0]
|
||||||
|
nk_per_class = (data.prevalence()*self.k).round().astype(int)
|
||||||
|
print(f'number of clusters per class {nk_per_class}')
|
||||||
|
|
||||||
|
kmeans_neg = KMeans(n_clusters=nk_per_class[0])
|
||||||
|
rn = kmeans_neg.fit_predict(Xn) # regions negative
|
||||||
|
|
||||||
|
kmeans_pos = KMeans(n_clusters=nk_per_class[1])
|
||||||
|
rp = kmeans_pos.fit_predict(Xp)+nk_per_class[0] # regions positive
|
||||||
|
|
||||||
|
classes = np.arange(self.k)
|
||||||
|
pos = LabelledCollection(Xp, rp, classes_=classes)
|
||||||
|
neg = LabelledCollection(Xn, rn, classes_=classes)
|
||||||
|
|
||||||
|
region_data = pos + neg
|
||||||
|
super(RegionProbAdjustment, self).fit(region_data, fit_learner, val_split)
|
||||||
|
|
||||||
|
self.reg2class = {r:(0 if r < nk_per_class[0] else 1) for r in range(2*self.k)}
|
||||||
|
|
||||||
|
return self
|
||||||
|
|
||||||
|
def classify(self, data):
|
||||||
|
regions = super(RegionProbAdjustment, self).classify(data)
|
||||||
|
return regions
|
||||||
|
|
||||||
|
def aggregate(self, classif_predictions):
|
||||||
|
region_prevalence = super(RegionProbAdjustment, self).aggregate(classif_predictions)
|
||||||
|
bin_prevalence = np.zeros(shape=2, dtype=np.float)
|
||||||
|
for r, prev in enumerate(region_prevalence):
|
||||||
|
bin_prevalence[self.reg2class[r]] += prev
|
||||||
|
return bin_prevalence
|
||||||
|
|
||||||
|
|
||||||
|
class RegionProbAdjustmentGlobal(BaseQuantifier):
|
||||||
|
|
||||||
|
def __init__(self, quantifier_fn: BaseQuantifier, k=5, clustering='gmm'):
|
||||||
|
self.quantifier_fn = quantifier_fn
|
||||||
|
self.k = k
|
||||||
|
self.clustering = clustering
|
||||||
|
|
||||||
|
def _find_regions(self, X):
|
||||||
|
if self.clustering == 'gmm':
|
||||||
|
self.svd = TruncatedSVD(n_components=500)
|
||||||
|
X = self.svd.fit_transform(X)
|
||||||
|
|
||||||
|
lowest_bic = np.infty
|
||||||
|
bic = []
|
||||||
|
for n_components in range(3, 8):
|
||||||
|
# Fit a Gaussian mixture with EM
|
||||||
|
gmm = GaussianMixture(n_components).fit(X)
|
||||||
|
bic.append(gmm.bic(X))
|
||||||
|
print(bic)
|
||||||
|
if bic[-1] < lowest_bic:
|
||||||
|
lowest_bic = bic[-1]
|
||||||
|
best_gmm = gmm
|
||||||
|
print(f'choosen GMM with {len(best_gmm.weights_)} components')
|
||||||
|
self.cluster = best_gmm
|
||||||
|
regions = self.cluster.predict(X)
|
||||||
|
elif self.clustering == 'kmeans':
|
||||||
|
print(f'kmeans with k={self.k}')
|
||||||
|
self.cluster = KMeans(n_clusters=self.k)
|
||||||
|
regions = self.cluster.fit_predict(X)
|
||||||
|
elif self.clustering == 'optics':
|
||||||
|
print('optics')
|
||||||
|
self.svd = TruncatedSVD(n_components=500)
|
||||||
|
X = self.svd.fit_transform(X)
|
||||||
|
self.cluster = OPTICS()
|
||||||
|
regions = self.cluster.fit_predict(X)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError
|
||||||
|
return regions
|
||||||
|
|
||||||
|
def _get_regions(self, X):
|
||||||
|
if self.clustering == 'gmm':
|
||||||
|
return self.cluster.predict(self.svd.transform(X))
|
||||||
|
elif self.clustering == 'kmeans':
|
||||||
|
return self.cluster.predict(X)
|
||||||
|
elif self.clustering == 'optics':
|
||||||
|
return self.cluster.predict(self.svd.transform(X))
|
||||||
|
else:
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
|
def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, int, LabelledCollection] = None):
|
||||||
|
self.classes = data.classes_
|
||||||
|
|
||||||
|
# first k-means (all classes involved), then PACC local to each cluster
|
||||||
|
g = self._find_regions(data.instances)
|
||||||
|
# g = self._get_regions(data.instances)
|
||||||
|
X, y = data.Xy
|
||||||
|
self.g_quantifiers = {}
|
||||||
|
trivial=0
|
||||||
|
for gi in np.unique(g):
|
||||||
|
qi_data = LabelledCollection(X[g==gi], y[g==gi], classes_=data.classes_)
|
||||||
|
if qi_data.counts()[1] <= 1:
|
||||||
|
# check for <= 1 instead of prevalence==0, since PACC requires at least two
|
||||||
|
# examples for performing stratified split
|
||||||
|
# some class is (almost) empty
|
||||||
|
# if qi_data.prevalence()[0] == 1: # all negatives
|
||||||
|
self.g_quantifiers[gi] = TrivialRejectorQuantifier()
|
||||||
|
trivial+=1
|
||||||
|
elif qi_data.counts()[0] <= 1: # (almost) all positives
|
||||||
|
self.g_quantifiers[gi] = TrivialAcceptorQuantifier()
|
||||||
|
trivial += 1
|
||||||
|
else:
|
||||||
|
self.g_quantifiers[gi] = self.quantifier_fn().fit(qi_data)
|
||||||
|
print(f'trivials={trivial}')
|
||||||
|
|
||||||
|
return self
|
||||||
|
|
||||||
|
@property
|
||||||
|
def classes_(self):
|
||||||
|
return self.classes
|
||||||
|
|
||||||
|
def quantify(self, instances):
|
||||||
|
# g = self.cluster.predict(instances)
|
||||||
|
g = self._get_regions(instances)
|
||||||
|
prevalence = np.zeros(len(self.classes_), dtype=np.float)
|
||||||
|
for gi in np.unique(g):
|
||||||
|
proportion_gi = (g==gi).mean()
|
||||||
|
prev_gi = self.g_quantifiers[gi].quantify(instances[g==gi])
|
||||||
|
prevalence += prev_gi * proportion_gi
|
||||||
|
return prevalence
|
||||||
|
|
||||||
|
|
||||||
|
def get_params(self, deep=True):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def set_params(self, **parameters):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class TrivialRejectorQuantifier(BinaryQuantifier):
|
||||||
|
def fit(self, data: LabelledCollection):
|
||||||
|
return self
|
||||||
|
|
||||||
|
def quantify(self, instances):
|
||||||
|
return np.asarray([1,0])
|
||||||
|
|
||||||
|
def set_params(self, **parameters):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def get_params(self, deep=True):
|
||||||
|
pass
|
||||||
|
|
||||||
|
@property
|
||||||
|
def classes_(self):
|
||||||
|
return np.asarray([0,1])
|
||||||
|
|
||||||
|
|
||||||
|
class TrivialAcceptorQuantifier(BinaryQuantifier):
|
||||||
|
def fit(self, data: LabelledCollection):
|
||||||
|
return self
|
||||||
|
|
||||||
|
def quantify(self, instances):
|
||||||
|
return np.asarray([0,1])
|
||||||
|
|
||||||
|
def set_params(self, **parameters):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def get_params(self, deep=True):
|
||||||
|
pass
|
||||||
|
|
||||||
|
@property
|
||||||
|
def classes_(self):
|
||||||
|
return np.asarray([0,1])
|
Loading…
Reference in New Issue