1
0
Fork 0

tables generation for Tweet experiments

This commit is contained in:
Alejandro Moreo Fernandez 2021-01-15 13:44:50 +01:00
parent c5ae2f8b1f
commit 43ed808945
4 changed files with 149 additions and 668 deletions

View File

@ -1,11 +1,9 @@
import quapy as qp import quapy as qp
import numpy as np import numpy as np
from os import makedirs from os import makedirs
# from evaluate import evaluate_directory, statistical_significance, get_ranks_from_Gao_Sebastiani
import sys, os import sys, os
import pickle import pickle
from experiments import result_path from experiments import result_path
from result_manager import ResultSet
from tabular import Table from tabular import Table
tables_path = './tables' tables_path = './tables'
@ -42,7 +40,6 @@ nice = {
} }
def nicerm(key): def nicerm(key):
return '\mathrm{'+nice[key]+'}' return '\mathrm{'+nice[key]+'}'
@ -98,13 +95,13 @@ def save_table(path, table):
foo.write(table) foo.write(table)
datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST
evaluation_measures = [qp.error.ae, qp.error.rae] evaluation_measures = [qp.error.ae, qp.error.rae]
gao_seb_methods = ['cc', 'acc', 'pcc', 'pacc', 'sld', 'svmq', 'svmkld', 'svmnkld'] gao_seb_methods = ['cc', 'acc', 'pcc', 'pacc', 'sld', 'svmq', 'svmkld', 'svmnkld']
new_methods = [] new_methods = []
def addfunc(dataset, method, loss):
def experiment_errors(dataset, method, loss):
path = result_path(dataset, method, 'm'+loss if not loss.startswith('m') else loss) path = result_path(dataset, method, 'm'+loss if not loss.startswith('m') else loss)
if os.path.exists(path): if os.path.exists(path):
true_prevs, estim_prevs, _, _, _, _ = pickle.load(open(path, 'rb')) true_prevs, estim_prevs, _, _, _, _ = pickle.load(open(path, 'rb'))
@ -127,49 +124,41 @@ for i, eval_func in enumerate(evaluation_measures):
nold_methods = len(gao_seb_methods) nold_methods = len(gao_seb_methods)
nnew_methods = len(added_methods) nnew_methods = len(added_methods)
table = Table(rows=datasets, cols=methods, addfunc=addfunc) # fill data table
table = Table(rows=datasets, cols=methods)
# fill table
for dataset in datasets: for dataset in datasets:
for method in methods: for method in methods:
table.add(dataset, method, eval_name) table.add(dataset, method, experiment_errors(dataset, method, eval_name))
# write the latex table
tabular = """ tabular = """
\\begin{tabularx}{\\textwidth}{|c||""" + ('Y|'*len(gao_seb_methods))+ '|' + ('Y|'*len(added_methods)) + """} \hline \\begin{tabularx}{\\textwidth}{|c||""" + ('Y|'*nold_methods)+ '|' + ('Y|'*nnew_methods) + """} \hline
& \multicolumn{"""+str(nold_methods)+"""}{c||}{Methods tested in~\cite{Gao:2016uq}} & \multicolumn{"""+str(nnew_methods)+"""}{c|}{} \\\\ \hline & \multicolumn{"""+str(nold_methods)+"""}{c||}{Methods tested in~\cite{Gao:2016uq}} &
\multicolumn{"""+str(nnew_methods)+"""}{c|}{} \\\\ \hline
""" """
rowreplace={dataset: nice.get(dataset, dataset.upper()) for dataset in datasets} rowreplace={dataset: nice.get(dataset, dataset.upper()) for dataset in datasets}
colreplace={method:'\side{' + nice.get(method, method.upper()) +'$^{' + nicerm(eval_name) + '}$} ' for method in methods} colreplace={method:'\side{' + nice.get(method, method.upper()) +'$^{' + nicerm(eval_name) + '}$} ' for method in methods}
tabular += table.latextabular(rowreplace=rowreplace, colreplace=colreplace) tabular += table.latexTabular(rowreplace=rowreplace, colreplace=colreplace)
tabular += "\n\end{tabularx}" tabular += "\n\end{tabularx}"
save_table(f'./tables/tab_results_{eval_name}.new2.tex', tabular) save_table(f'./tables/tab_results_{eval_name}.new.tex', tabular)
# Tables ranks for AE and RAE (two tables) # Tables ranks for AE and RAE (two tables)
# ---------------------------------------------------- # ----------------------------------------------------
def addfuncRank(dataset, method):
rank = table.get(dataset, method, 'rank')
if rank is None:
return None
return [rank]
methods = gao_seb_methods methods = gao_seb_methods
nold_methods = len(gao_seb_methods)
ranktable = Table(rows=datasets, cols=methods, addfunc=addfuncRank) # fill the data table
# fill table ranktable = Table(rows=datasets, cols=methods, missing='--')
for dataset in datasets: for dataset in datasets:
for method in methods: for method in methods:
ranktable.add(dataset, method) ranktable.add(dataset, method, values=table.get(dataset, method, 'rank'))
# write the latex table
tabular = """ tabular = """
\\begin{tabularx}{\\textwidth}{|c||""" + ('Y|' * len(gao_seb_methods)) + """} \hline \\begin{tabularx}{\\textwidth}{|c||""" + ('Y|' * len(gao_seb_methods)) + """} \hline
& \multicolumn{""" + str(nold_methods) + """}{c||}{Methods tested in~\cite{Gao:2016uq}} \\\\ \hline & \multicolumn{""" + str(nold_methods) + """}{c|}{Methods tested in~\cite{Gao:2016uq}} \\\\ \hline
""" """
for method in methods: for method in methods:
tabular += ' & \side{' + nice.get(method, method.upper()) +'$^{' + nicerm(eval_name) + '}$} ' tabular += ' & \side{' + nice.get(method, method.upper()) +'$^{' + nicerm(eval_name) + '}$} '
@ -180,28 +169,29 @@ for i, eval_func in enumerate(evaluation_measures):
for method in methods: for method in methods:
newrank = ranktable.get(dataset, method) newrank = ranktable.get(dataset, method)
oldrank = gao_seb_ranks[f'{dataset}-{method}-{eval_name}'] oldrank = gao_seb_ranks[f'{dataset}-{method}-{eval_name}']
if newrank is None: if newrank != '--':
newrank = '--' newrank = f'{int(newrank)}'
else: color = ranktable.get_color(dataset, method)
newrank = f'{int(newrank)}' if color == '--':
tabular += ' & ' + f'{newrank}' + f' ({oldrank}) ' + ranktable.get_color(dataset, method) color = ''
tabular += ' & ' + f'{newrank}' + f' ({oldrank}) ' + color
tabular += '\\\\\hline\n' tabular += '\\\\\hline\n'
tabular += '\hline\n'
tabular += 'Average & ' tabular += 'Average '
for method in methods: for method in methods:
newrank = ranktable.get_col_average(method) newrank = ranktable.get_average(method)
oldrank = gao_seb_ranks[f'Average-{method}-{eval_name}'] oldrank = gao_seb_ranks[f'Average-{method}-{eval_name}']
if newrank is None or np.isnan(newrank): if newrank != '--':
newrank = '--'
else:
newrank = f'{newrank:.1f}' newrank = f'{newrank:.1f}'
oldrank = f'{oldrank:.1f}' oldrank = f'{oldrank:.1f}'
tabular += ' & ' + f'{newrank}' + f' ({oldrank}) ' + ranktable.get_color(dataset, method) color = ranktable.get_average(method, 'color')
if color == '--':
color = ''
tabular += ' & ' + f'{newrank}' + f' ({oldrank}) ' + color
tabular += '\\\\\hline\n' tabular += '\\\\\hline\n'
tabular += "\end{tabularx}" tabular += "\end{tabularx}"
save_table(f'./tables/tab_rank_{eval_name}.new2.tex', tabular) save_table(f'./tables/tab_rank_{eval_name}.new.tex', tabular)
print("[Done]") print("[Done]")

View File

@ -1,204 +0,0 @@
from scipy.stats import wilcoxon, ttest_ind_from_stats
import numpy as np
class ResultSet:
VALID_TESTS = [None, "wilcoxon", "ttest_ind_from_stats"]
TTEST_DIFF = 'different'
TTEST_SIM = 'similar'
TTEST_SAME = 'same'
def __init__(self, name, addfunc, compare='mean', lower_is_better=True, show_std=True, test="wilcoxon",
remove_mean='', prec_mean=3, remove_std='', prec_std=3, maxtone=50, minval=None, maxval=None):
"""
:param name: name of the result set (e.g., a Dataset)
:param addfunc: a function which is called to process the result input in the "add" method. This function should
return a dictionary containing any key-value (e.g., 'mean':0.89) of interest
:param compare: the key (as generated by addfunc) that is to be compared in order to rank results
:param lower_is_better: if True, lower values of the "compare" key will result in higher ranks
:param show_std: whether or not to show the 'std' value (if True, the addfunc is expected to generate it)
:param test: which test of statistical significance to use. If "wilcoxon" then scipy.stats.wilcoxon(x,y) will
be computed where x,y are the values of the key "values" as computed by addfunc. If "ttest_ind_from_stats", then
scipy.stats.ttest_ind_from_stats will be called on "mean", "std", "nobs" values (as computed by addfunc) for
both samples being compared.
:param remove_mean: if specified, removes the string from the mean (e.g., useful to remove the '0.')
:param remove_std: if specified, removes the string from the std (e.g., useful to remove the '0.')
"""
self.name = name
self.addfunc = addfunc
self.compare = compare
self.lower_is_better = lower_is_better
self.show_std = show_std
assert test in self.VALID_TESTS, f'unknown test, valid are {self.VALID_TESTS}'
self.test = test
self.remove_mean = remove_mean
self.prec_mean = prec_mean
self.remove_std = remove_std
self.prec_std = prec_std
self.maxtone = maxtone
self.minval = minval
self.maxval = maxval
self.r = dict()
self.computed = False
def add(self, key, *args):
result = self.addfunc(*args)
if result is None:
return
assert 'values' in result, f'the add function {self.addfunc.__name__} does not fill the "values" attribute'
self.r[key] = result
vals = self.r[key]['values']
if isinstance(vals, np.ndarray):
self.r[key]['mean'] = vals.mean()
self.r[key]['std'] = vals.std()
self.r[key]['nobs'] = len(vals)
self.computed = False
def update(self):
if not self.computed:
self.compute()
def compute(self):
keylist = np.asarray(list(self.r.keys()))
vallist = [self.r[key][self.compare] for key in keylist]
keylist = keylist[np.argsort(vallist)]
print(vallist)
self.range_minval = min(vallist) if self.minval is None else self.minval
self.range_maxval = max(vallist) if self.maxval is None else self.maxval
if not self.lower_is_better:
keylist = keylist[::-1]
# keep track of statistical significance tests; if all are different, then the "phantom dags" will not be shown
self.some_similar = False
for i, key in enumerate(keylist):
rank = i + 1
isbest = rank == 1
if isbest:
best = self.r[key]
self.r[key]['best'] = isbest
self.r[key]['rank'] = rank
#color
val = self.r[key][self.compare]
self.r[key]['color'] = self.get_value_color(val, minval=self.range_minval, maxval=self.range_maxval)
if self.test is not None:
if isbest:
p_val = 0
elif self.test == 'wilcoxon':
_, p_val = wilcoxon(best['values'], self.r[key]['values'])
elif self.test == 'ttest_ind_from_stats':
mean1, std1, nobs1 = best['mean'], best['std'], best['nobs']
mean2, std2, nobs2 = self.r[key]['mean'], self.r[key]['std'], self.r[key]['nobs']
_, p_val = ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2)
if 0.005 >= p_val:
self.r[key]['test'] = ResultSet.TTEST_DIFF
elif 0.05 >= p_val > 0.005:
self.r[key]['test'] = ResultSet.TTEST_SIM
self.some_similar = True
elif p_val > 0.05:
self.r[key]['test'] = ResultSet.TTEST_SAME
self.some_similar = True
self.computed = True
def latex(self, key, missing='--', color=True):
if key not in self.r:
return missing
self.update()
rd = self.r[key]
s = f"{rd['mean']:.{self.prec_mean}f}"
if self.remove_mean:
s = s.replace(self.remove_mean, '.')
if rd['best']:
s = "\\textbf{"+s+"}"
else:
if self.test is not None and self.some_similar:
if rd['test'] == ResultSet.TTEST_SIM:
s += '^{\dag\phantom{\dag}}'
elif rd['test'] == ResultSet.TTEST_SAME:
s += '^{\ddag}'
elif rd['test'] == ResultSet.TTEST_DIFF:
s += '^{\phantom{\ddag}}'
if self.show_std:
std = f"{rd['std']:.{self.prec_std}f}"
if self.remove_std:
std = std.replace(self.remove_std, '.')
s += f" \pm {std}"
s = f'$ {s} $'
if color:
s += ' ' + self.r[key]['color']
return s
def mean(self, attr='mean', required:int=None, missing=np.nan):
"""
returns the mean value for the "attr" attribute
:param attr: the attribute to average across results
:param required: if specified, indicates the number of values that should be part of the mean; if this number
is different, then the mean is not computed
:param missing: the value to return in case the required condition is not satisfied
:return: the mean of the "key" attribute
"""
keylist = list(self.r.keys())
vallist = [self.r[key].get(attr, None) for key in keylist]
if None in vallist:
return missing
if required is not None:
if len(vallist) != required:
return missing
return np.mean(vallist)
def get(self, key, attr, missing='--'):
if key in self.r:
self.update()
if attr in self.r[key]:
return self.r[key][attr]
return missing
def get_color(self, key):
if key not in self.r:
return ''
self.update()
return self.r[key]['color']
def get_value_color(self, val, minval=None, maxval=None):
if minval is None or maxval is None:
self.update()
minval=self.range_minval
maxval=self.range_maxval
val = (val - minval) / (maxval - minval)
if self.lower_is_better:
val = 1 - val
return color_red2green_01(val, self.maxtone)
def change_compare(self, attr):
self.compare = attr
self.computed = False
def color_red2green_01(val, maxtone=100):
assert 0 <= val <= 1, f'val {val} out of range [0,1]'
# rescale to [-1,1]
val = val * 2 - 1
if val < 0:
color = 'red'
tone = maxtone * (-val)
else:
color = 'green'
tone = maxtone * val
return '\cellcolor{' + color + f'!{int(tone)}' + '}'

View File

@ -1,247 +0,0 @@
import quapy as qp
import numpy as np
from os import makedirs
# from evaluate import evaluate_directory, statistical_significance, get_ranks_from_Gao_Sebastiani
import sys, os
import pickle
from experiments import result_path
from result_manager import ResultSet
tables_path = './tables'
MAXTONE = 50 # sets the intensity of the maximum color reached by the worst (red) and best (green) results
makedirs(tables_path, exist_ok=True)
sample_size = 100
qp.environ['SAMPLE_SIZE'] = sample_size
nice = {
'mae':'AE',
'mrae':'RAE',
'ae':'AE',
'rae':'RAE',
'svmkld': 'SVM(KLD)',
'svmnkld': 'SVM(NKLD)',
'svmq': 'SVM(Q)',
'svmae': 'SVM(AE)',
'svmnae': 'SVM(NAE)',
'svmmae': 'SVM(AE)',
'svmmrae': 'SVM(RAE)',
'quanet': 'QuaNet',
'hdy': 'HDy',
'dys': 'DyS',
'svmperf':'',
'sanders': 'Sanders',
'semeval13': 'SemEval13',
'semeval14': 'SemEval14',
'semeval15': 'SemEval15',
'semeval16': 'SemEval16',
'Average': 'Average'
}
def nicerm(key):
return '\mathrm{'+nice[key]+'}'
def color_from_rel_rank(rel_rank, maxtone=100):
rel_rank = rel_rank*2-1
if rel_rank < 0:
color = 'red'
tone = maxtone*(-rel_rank)
else:
color = 'green'
tone = maxtone*rel_rank
return '\cellcolor{' + color + f'!{int(tone)}' + '}'
def color_from_abs_rank(abs_rank, n_methods, maxtone=100):
rel_rank = 1.-(abs_rank-1.)/(n_methods-1)
return color_from_rel_rank(rel_rank, maxtone)
def load_Gao_Sebastiani_previous_results():
def rename(method):
old2new = {
'kld': 'svmkld',
'nkld': 'svmnkld',
'qbeta2': 'svmq',
'em': 'sld'
}
return old2new.get(method, method)
gao_seb_results = {}
with open('./Gao_Sebastiani_results.txt', 'rt') as fin:
lines = fin.readlines()
for line in lines[1:]:
line = line.strip()
parts = line.lower().split()
if len(parts) == 4:
dataset, method, ae, rae = parts
else:
method, ae, rae = parts
learner, method = method.split('-')
method = rename(method)
gao_seb_results[f'{dataset}-{method}-ae'] = float(ae)
gao_seb_results[f'{dataset}-{method}-rae'] = float(rae)
return gao_seb_results
def get_ranks_from_Gao_Sebastiani():
gao_seb_results = load_Gao_Sebastiani_previous_results()
datasets = set([key.split('-')[0] for key in gao_seb_results.keys()])
methods = np.sort(np.unique([key.split('-')[1] for key in gao_seb_results.keys()]))
ranks = {}
for metric in ['ae', 'rae']:
for dataset in datasets:
scores = [gao_seb_results[f'{dataset}-{method}-{metric}'] for method in methods]
order = np.argsort(scores)
sorted_methods = methods[order]
for i, method in enumerate(sorted_methods):
ranks[f'{dataset}-{method}-{metric}'] = i+1
for method in methods:
rankave = np.mean([ranks[f'{dataset}-{method}-{metric}'] for dataset in datasets])
ranks[f'Average-{method}-{metric}'] = rankave
return ranks, gao_seb_results
def save_table(path, table):
print(f'saving results in {path}')
with open(path, 'wt') as foo:
foo.write(table)
# Tables evaluation scores for AE and RAE (two tables)
# ----------------------------------------------------
datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST
evaluation_measures = [qp.error.ae, qp.error.rae]
gao_seb_methods = ['cc', 'acc', 'pcc', 'pacc', 'sld', 'svmq', 'svmkld', 'svmnkld']
new_methods = []
def addfunc(dataset, method, loss):
path = result_path(dataset, method, 'm'+loss if not loss.startswith('m') else loss)
if os.path.exists(path):
true_prevs, estim_prevs, _, _, _, _ = pickle.load(open(path, 'rb'))
err_fn = getattr(qp.error, loss)
errors = err_fn(true_prevs, estim_prevs)
return {
'values': errors,
}
return None
def addave(method, tables):
values = []
for table in tables:
mean = table.get(method, 'values', missing=None)
if mean is None:
return None
values.append(mean)
values = np.concatenate(values)
return {
'values': values
}
def addrankave(method, tables):
values = []
for table in tables:
rank = table.get(method, 'rank', missing=None)
if rank is None:
return None
values.append(rank)
return {
'values': np.asarray(values)
}
TABLES = {eval_func.__name__:{} for eval_func in evaluation_measures}
for i, eval_func in enumerate(evaluation_measures):
eval_name = eval_func.__name__
added_methods = ['svm' + eval_name] + new_methods
methods = gao_seb_methods + added_methods
nold_methods = len(gao_seb_methods)
nnew_methods = len(added_methods)
# fill table
TABLE = TABLES[eval_name]
for dataset in datasets:
TABLE[dataset] = ResultSet(dataset, addfunc, show_std=False, test="ttest_ind_from_stats")
for method in methods:
TABLE[dataset].add(method, dataset, method, eval_name)
TABLE['Average'] = ResultSet('ave', addave, show_std=False, test="ttest_ind_from_stats")
for method in methods:
TABLE['Average'].add(method, method, [TABLE[dataset] for dataset in datasets])
tabular = """
\\begin{tabularx}{\\textwidth}{|c||""" + ('Y|'*len(gao_seb_methods))+ '|' + ('Y|'*len(added_methods)) + """} \hline
& \multicolumn{"""+str(nold_methods)+"""}{c||}{Methods tested in~\cite{Gao:2016uq}} & \multicolumn{"""+str(nnew_methods)+"""}{c|}{} \\\\ \hline
"""
for method in methods:
tabular += ' & \side{' + nice.get(method, method.upper()) +'$^{' + nicerm(eval_name) + '}$} '
tabular += '\\\\\hline\n'
for dataset in datasets + ['Average']:
if dataset == 'Average': tabular+= '\line\n'
tabular += nice.get(dataset, dataset.upper()) + ' '
for method in methods:
tabular += ' & ' + TABLE[dataset].latex(method)
tabular += '\\\\\hline\n'
tabular += "\end{tabularx}"
save_table(f'./tables/tab_results_{eval_name}.new.tex', tabular)
gao_seb_ranks, gao_seb_results = get_ranks_from_Gao_Sebastiani()
# Tables ranks for AE and RAE (two tables)
# ----------------------------------------------------
for i, eval_func in enumerate(evaluation_measures):
eval_name = eval_func.__name__
methods = gao_seb_methods
nold_methods = len(gao_seb_methods)
TABLE = TABLES[eval_name]
TABLE['Average'] = ResultSet('ave', addrankave, show_std=False, test="ttest_ind_from_stats")
for method in methods:
TABLE['Average'].add(method, method, [TABLE[dataset] for dataset in datasets])
tabular = """
\\begin{tabularx}{\\textwidth}{|c||""" + ('Y|' * len(gao_seb_methods)) + """} \hline
& \multicolumn{""" + str(nold_methods) + """}{c||}{Methods tested in~\cite{Gao:2016uq}} \\\\ \hline
"""
for method in methods:
tabular += ' & \side{' + nice.get(method, method.upper()) +'$^{' + nicerm(eval_name) + '}$} '
tabular += '\\\\\hline\n'
for dataset in datasets + ['Average']:
if dataset == 'Average':
tabular += '\line\n'
else:
TABLE[dataset].change_compare('rank')
tabular += nice.get(dataset, dataset.upper()) + ' '
for method in gao_seb_methods:
if dataset == 'Average':
method_rank = TABLE[dataset].get(method, 'mean')
else:
method_rank = TABLE[dataset].get(method, 'rank')
gao_seb_rank = gao_seb_ranks[f'{dataset}-{method}-{eval_name}']
if dataset == 'Average':
if method_rank != '--':
method_rank = f'{method_rank:.1f}'
gao_seb_rank = f'{gao_seb_rank:.1f}'
tabular += ' & ' + f'{method_rank}' + f' ({gao_seb_rank}) ' + TABLE[dataset].get_color(method)
tabular += '\\\\\hline\n'
tabular += "\end{tabularx}"
save_table(f'./tables/tab_rank_{eval_name}.new.tex', tabular)
print("[Done]")

View File

@ -6,41 +6,28 @@ from scipy.stats import ttest_ind_from_stats, wilcoxon
class Table: class Table:
VALID_TESTS = [None, "wilcoxon", "ttest"] VALID_TESTS = [None, "wilcoxon", "ttest"]
def __init__(self, rows, cols, addfunc, lower_is_better=True, ttest='ttest', prec_mean=3, clean_zero=False, def __init__(self, rows, cols, lower_is_better=True, ttest='ttest', prec_mean=3,
show_std=False, prec_std=3): clean_zero=False, show_std=False, prec_std=3, average=True, missing=None, missing_str='--', color=True):
assert ttest in self.VALID_TESTS, f'unknown test, valid are {self.VALID_TESTS}' assert ttest in self.VALID_TESTS, f'unknown test, valid are {self.VALID_TESTS}'
self.rows = np.asarray(rows) self.rows = np.asarray(rows)
self.row_index = {row:i for i,row in enumerate(rows)} self.row_index = {row:i for i, row in enumerate(rows)}
self.cols = np.asarray(cols) self.cols = np.asarray(cols)
self.col_index = {col:j for j,col in enumerate(cols)} self.col_index = {col:j for j, col in enumerate(cols)}
self.map = {}
self.mfunc = {} self.map = {} # keyed (#rows,#cols)-ndarrays holding computations from self.map['values']
self.rarr = {}
self.carr = {}
self._addmap('values', dtype=object) self._addmap('values', dtype=object)
self._addmap('fill', dtype=bool, func=lambda x: x is not None)
self._addmap('mean', dtype=float, func=np.mean)
self._addmap('std', dtype=float, func=np.std)
self._addmap('nobs', dtype=float, func=len)
self._addmap('rank', dtype=int, func=None)
self._addmap('color', dtype=object, func=None)
self._addmap('ttest', dtype=object, func=None)
self._addrarr('mean', dtype=float, func=np.mean, argmap='mean')
self._addrarr('min', dtype=float, func=np.min, argmap='mean')
self._addrarr('max', dtype=float, func=np.max, argmap='mean')
self._addcarr('mean', dtype=float, func=np.mean, argmap='mean')
self._addcarr('rank-mean', dtype=float, func=np.mean, argmap='rank')
if self.nrows>1:
self._col_ttest = Table(['ttest'], cols, _merge, lower_is_better, ttest)
else:
self._col_ttest = None
self.addfunc = addfunc
self.lower_is_better = lower_is_better self.lower_is_better = lower_is_better
self.ttest = ttest self.ttest = ttest
self.prec_mean = prec_mean self.prec_mean = prec_mean
self.clean_zero = clean_zero self.clean_zero = clean_zero
self.show_std = show_std self.show_std = show_std
self.prec_std = prec_std self.prec_std = prec_std
self.add_average = average
self.missing = missing
self.missing_str = missing_str
self.color = color
self.touch() self.touch()
@property @property
@ -58,27 +45,6 @@ class Table:
if self.modif: if self.modif:
self.compute() self.compute()
def _addmap(self, map, dtype, func=None):
self.map[map] = np.empty((self.nrows, self.ncols), dtype=dtype)
self.mfunc[map] = func
self.touch()
def _addrarr(self, rarr, dtype, func=np.mean, argmap='mean'):
self.rarr[rarr] = {
'arr': np.empty(self.ncols, dtype=dtype),
'func': func,
'argmap': argmap
}
self.touch()
def _addcarr(self, carr, dtype, func=np.mean, argmap='mean'):
self.carr[carr] = {
'arr': np.empty(self.nrows, dtype=dtype),
'func': func,
'argmap': argmap
}
self.touch()
def _getfilled(self): def _getfilled(self):
return np.argwhere(self.map['fill']) return np.argwhere(self.map['fill'])
@ -89,34 +55,19 @@ class Table:
def _indexes(self): def _indexes(self):
return itertools.product(range(self.nrows), range(self.ncols)) return itertools.product(range(self.nrows), range(self.ncols))
def _runmap(self, map): def _addmap(self, map, dtype, func=None):
self.map[map] = np.empty((self.nrows, self.ncols), dtype=dtype)
if func is None:
return
m = self.map[map] m = self.map[map]
f = self.mfunc[map] f = func
if f is None: if f is None:
return return
indexes = self._indexes() if map == 'fill' else self._getfilled() indexes = self._indexes() if map == 'fill' else self._getfilled()
for i,j in indexes: for i, j in indexes:
m[i,j] = f(self.values[i,j]) m[i, j] = f(self.values[i, j])
def _runrarr(self, rarr): def _addrank(self):
dic = self.rarr[rarr]
arr, f, map = dic['arr'], dic['func'], dic['argmap']
for col, cid in self.col_index.items():
if all(self.map['fill'][:, cid]):
arr[cid] = f(self.map[map][:, cid])
else:
arr[cid] = None
def _runcarr(self, carr):
dic = self.carr[carr]
arr, f, map = dic['arr'], dic['func'], dic['argmap']
for row, rid in self.row_index.items():
if all(self.map['fill'][rid, :]):
arr[rid] = f(self.map[map][rid, :])
else:
arr[rid] = None
def _runrank(self):
for i in range(self.nrows): for i in range(self.nrows):
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten() filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
col_means = [self.map['mean'][i,j] for j in filled_cols_idx] col_means = [self.map['mean'][i,j] for j in filled_cols_idx]
@ -125,7 +76,7 @@ class Table:
ranked_cols_idx = ranked_cols_idx[::-1] ranked_cols_idx = ranked_cols_idx[::-1]
self.map['rank'][i, ranked_cols_idx] = np.arange(1, len(filled_cols_idx)+1) self.map['rank'][i, ranked_cols_idx] = np.arange(1, len(filled_cols_idx)+1)
def _runcolor(self): def _addcolor(self):
for i in range(self.nrows): for i in range(self.nrows):
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten() filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
if filled_cols_idx.size==0: if filled_cols_idx.size==0:
@ -144,6 +95,12 @@ class Table:
normval = 1 - normval normval = 1 - normval
self.map['color'][i, col_idx] = color_red2green_01(normval) self.map['color'][i, col_idx] = color_red2green_01(normval)
def _addlatex(self):
return
for i,j in self._getfilled():
self.map['latex'][i,j] = self.latex(self.rows[i], self.cols[j])
def _run_ttest(self, row, col1, col2): def _run_ttest(self, row, col1, col2):
mean1 = self.map['mean'][row, col1] mean1 = self.map['mean'][row, col1]
std1 = self.map['std'][row, col1] std1 = self.map['std'][row, col1]
@ -160,10 +117,10 @@ class Table:
_, p_val = wilcoxon(values1, values2) _, p_val = wilcoxon(values1, values2)
return p_val return p_val
def _runttest(self): def _addttest(self):
if self.ttest is None: if self.ttest is None:
return return
self.some_similar = False self.some_similar = [False]*self.ncols
for i in range(self.nrows): for i in range(self.nrows):
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten() filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
if len(filled_cols_idx) <= 1: if len(filled_cols_idx) <= 1:
@ -182,62 +139,74 @@ class Table:
pval_outcome = pval_interpretation(p_val) pval_outcome = pval_interpretation(p_val)
self.map['ttest'][i, j] = pval_outcome self.map['ttest'][i, j] = pval_outcome
if pval_outcome != 'Diff': if pval_outcome != 'Diff':
self.some_similar = True self.some_similar[j] = True
def get_col_average(self, col, arr='mean'):
self.update()
cid = self.col_index[col]
return self.rarr[arr]['arr'][cid]
def _map_list(self):
maps = list(self.map.keys())
maps.remove('fill')
maps.remove('values')
maps.remove('color')
maps.remove('ttest')
return ['fill'] + maps
def compute(self): def compute(self):
for map in self._map_list(): self._addmap('fill', dtype=bool, func=lambda x: x is not None)
self._runmap(map) self._addmap('mean', dtype=float, func=np.mean)
self._runrank() self._addmap('std', dtype=float, func=np.std)
self._runcolor() self._addmap('nobs', dtype=float, func=len)
self._runttest() self._addmap('rank', dtype=int, func=None)
for arr in self.rarr.keys(): self._addmap('color', dtype=object, func=None)
self._runrarr(arr) self._addmap('ttest', dtype=object, func=None)
for arr in self.carr.keys(): self._addmap('latex', dtype=object, func=None)
self._runcarr(arr) self._addrank()
if self._col_ttest != None: self._addcolor()
for col in self.cols: self._addttest()
self._col_ttest.add('ttest', col, self.col_index[col], self.map['fill'], self.values, self.map['mean'], self.ttest) self._addlatex()
self._col_ttest.compute() if self.add_average:
self._addave()
self.modif = False self.modif = False
def add(self, row, col, *args, **kwargs): def _is_column_full(self, col):
print(row, col, args, kwargs) return all(self.map['fill'][:, self.col_index[col]])
values = self.addfunc(row, col, *args, **kwargs)
# if values is None: def _addave(self):
# raise ValueError(f'addfunc returned None for row={row} col={col}') ave = Table(['ave'], self.cols, lower_is_better=self.lower_is_better, ttest=self.ttest, average=False,
rid, cid = self.coord(row, col) missing=self.missing, missing_str=self.missing_str)
for col in self.cols:
values = None
if self._is_column_full(col):
if self.ttest == 'ttest':
values = np.asarray(self.map['mean'][:, self.col_index[col]])
else: # wilcoxon
values = np.concatenate(self.values[:, self.col_index[col]])
ave.add('ave', col, values)
self.average = ave
def add(self, row, col, values):
if values is not None:
values = np.asarray(values)
if values.ndim==0:
values = values.flatten()
rid, cid = self._coordinates(row, col)
self.map['values'][rid, cid] = values self.map['values'][rid, cid] = values
self.touch() self.touch()
def get(self, row, col, attr='mean'): def get(self, row, col, attr='mean'):
assert attr in self.map, f'unknwon attribute {attr}'
self.update() self.update()
rid, cid = self.coord(row, col) assert attr in self.map, f'unknwon attribute {attr}'
rid, cid = self._coordinates(row, col)
if self.map['fill'][rid, cid]: if self.map['fill'][rid, cid]:
return self.map[attr][rid, cid] v = self.map[attr][rid, cid]
if v is None or (isinstance(v,float) and np.isnan(v)):
return self.missing
return v
else:
return self.missing
def coord(self, row, col): def _coordinates(self, row, col):
assert row in self.row_index, f'row {row} out of range' assert row in self.row_index, f'row {row} out of range'
assert col in self.col_index, f'col {col} out of range' assert col in self.col_index, f'col {col} out of range'
rid = self.row_index[row] rid = self.row_index[row]
cid = self.col_index[col] cid = self.col_index[col]
return rid, cid return rid, cid
def get_col_table(self): def get_average(self, col, attr='mean'):
return self._col_ttest self.update()
if self.add_average:
return self.average.get('ave', col, attr=attr)
return None
def get_color(self, row, col): def get_color(self, row, col):
color = self.get(row, col, attr='color') color = self.get(row, col, attr='color')
@ -245,11 +214,11 @@ class Table:
return '' return ''
return color return color
def latex(self, row, col, missing='--', color=True): def latex(self, row, col):
self.update() self.update()
i,j = self.coord(row, col) i,j = self._coordinates(row, col)
if self.map['fill'][i,j] == False: if self.map['fill'][i,j] == False:
return missing return self.missing_str
mean = self.map['mean'][i,j] mean = self.map['mean'][i,j]
l = f" {mean:.{self.prec_mean}f}" l = f" {mean:.{self.prec_mean}f}"
@ -257,78 +226,69 @@ class Table:
l = l.replace(' 0.', '.') l = l.replace(' 0.', '.')
isbest = self.map['rank'][i,j] == 1 isbest = self.map['rank'][i,j] == 1
if isbest: if isbest:
l = "\\textbf{"+l+"}" l = "\\textbf{"+l.strip()+"}"
else:
if self.ttest is not None and self.some_similar:
test_label = self.map['ttest'][i,j]
if test_label == 'Sim':
l += '^{\dag\phantom{\dag}}'
elif test_label == 'Same':
l += '^{\ddag}'
elif test_label == 'Diff':
l += '^{\phantom{\ddag}}'
stat = ''
if self.ttest is not None and self.some_similar[j]:
test_label = self.map['ttest'][i,j]
if test_label == 'Sim':
stat = '^{\dag\phantom{\dag}}'
elif test_label == 'Same':
stat = '^{\ddag}'
elif isbest or test_label == 'Diff':
stat = '^{\phantom{\ddag}}'
std = ''
if self.show_std: if self.show_std:
std = self.map['std'][i,j] std = self.map['std'][i,j]
std = f" {std:.{self.prec_std}f}" std = f" {std:.{self.prec_std}f}"
if self.clean_zero: if self.clean_zero:
std = std.replace(' 0.', '.') std = std.replace(' 0.', '.')
l += f" \pm {std}" std = f" \pm {std:{self.prec_std}}"
l = f'$ {l} $' if stat!='' or std!='':
if color: l = f'{l}${stat}{std}$'
if self.color:
l += ' ' + self.map['color'][i,j] l += ' ' + self.map['color'][i,j]
return l return l
def latextabular(self, missing='--', color=True, rowreplace={}, colreplace={}, average=True): def latexTabular(self, rowreplace={}, colreplace={}, average=True):
tab = ' & ' tab = ' & '
tab += ' & '.join([colreplace.get(col, col) for col in self.cols]) tab += ' & '.join([colreplace.get(col, col) for col in self.cols])
tab += ' \\\\\hline\n' tab += ' \\\\\hline\n'
for row in self.rows: for row in self.rows:
rowname = rowreplace.get(row, row) rowname = rowreplace.get(row, row)
tab += rowname + ' & ' tab += rowname + ' & '
tab += self.latexrow(row, missing, color) tab += self.latexRow(row)
tab += ' \\\\\hline\n'
if average: if average:
tab += '\hline\n'
tab += 'Average & ' tab += 'Average & '
tab += self.latexave(missing, color) tab += self.latexAverage()
tab += ' \\\\\hline\n'
return tab return tab
def latexRow(self, row, endl='\\\\\hline\n'):
def latexrow(self, row, missing='--', color=True): s = [self.latex(row, col) for col in self.cols]
s = [self.latex(row, col, missing=missing, color=color) for col in self.cols]
s = ' & '.join(s) s = ' & '.join(s)
s += ' ' + endl
return s return s
def latexave(self, missing='--', color=True): def latexAverage(self, endl='\\\\\hline\n'):
return self._col_ttest.latexrow('ttest') if self.add_average:
return self.average.latexRow('ave', endl=endl)
def get_rank_table(self): def getRankTable(self):
t = Table(rows=self.rows, cols=self.cols, addfunc=_getrank, ttest=None, prec_mean=0) t = Table(rows=self.rows, cols=self.cols, prec_mean=0, average=True)
for row, col in self._getfilled(): for rid, cid in self._getfilled():
t.add(self.rows[row], self.cols[col], row, col, self.map['rank']) row = self.rows[rid]
col = self.cols[cid]
t.add(row, col, self.get(row, col, 'rank'))
t.compute()
return t return t
def _getrank(row, col, rowid, colid, rank):
return [rank[rowid, colid]]
def _merge(unused, col, colidx, fill, values, means, ttest):
if all(fill[:,colidx]):
nrows = values.shape[0]
if ttest=='ttest':
values = np.asarray(means[:, colidx])
else: # wilcoxon
values = [values[i, colidx] for i in range(nrows)]
values = np.concatenate(values)
return values
else:
return None
def pval_interpretation(p_val): def pval_interpretation(p_val):
if 0.005 >= p_val: if 0.005 >= p_val:
return 'Diff' return 'Diff'
@ -352,21 +312,3 @@ def color_red2green_01(val, maxtone=50):
tone = maxtone * val tone = maxtone * val
return '\cellcolor{' + color + f'!{int(tone)}' + '}' return '\cellcolor{' + color + f'!{int(tone)}' + '}'
#
# def addfunc(m,d, mean, size):
# return np.random.rand(size)+mean
#
# t = Table(rows = ['M1', 'M2', 'M3'], cols=['D1', 'D2', 'D3', 'D4'], addfunc=addfunc, ttest='wilcoxon')
# t.add('M1','D1', mean=0.5, size=100)
# t.add('M1','D2', mean=0.5, size=100)
# t.add('M2','D1', mean=0.2, size=100)
# t.add('M2','D2', mean=0.1, size=100)
# t.add('M2','D3', mean=0.7, size=100)
# t.add('M2','D4', mean=0.3, size=100)
# t.add('M3','D1', mean=0.9, size=100)
# t.add('M3','D2', mean=0, size=100)
#
# print(t.latextabular())
#
# print('rank')
# print(t.get_rank_table().latextabular())