forked from moreo/QuaPy
statring 5th approach
This commit is contained in:
parent
1aa9891ff9
commit
4150f4351f
|
@ -0,0 +1,161 @@
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.svm import LinearSVC
|
||||
|
||||
import quapy as qp
|
||||
import quapy.functional as F
|
||||
from Retrieval.commons import RetrievedSamples, load_txt_sample
|
||||
from method.non_aggregative import MaximumLikelihoodPrevalenceEstimation
|
||||
from quapy.method.aggregative import ClassifyAndCount, EMQ, ACC, PCC, PACC, KDEyML
|
||||
from quapy.protocol import AbstractProtocol
|
||||
from quapy.data.base import LabelledCollection
|
||||
|
||||
from glob import glob
|
||||
from os.path import join
|
||||
from tqdm import tqdm
|
||||
|
||||
"""
|
||||
In this fifth experiment, we have pairs of (Li,Ui) with Li a training set and Ui a test set as
|
||||
in the fourth experiment, and the fairness group are defined upon geographic info as in the fourth case.
|
||||
As in the fourth, the data Li and Ui have been drawn by retrieving query-related documents from
|
||||
a pool of the same size. Unlike the fourth experiment, here the training queries are
|
||||
|
||||
Por ahora 1000 en tr y 100 en test
|
||||
Parece que ahora hay muy poco shift
|
||||
"""
|
||||
|
||||
def cls(classifier_trained=None):
|
||||
if classifier_trained is None:
|
||||
# return LinearSVC()
|
||||
return LogisticRegression()
|
||||
else:
|
||||
return classifier_trained
|
||||
|
||||
|
||||
def methods(classifier_trained=None):
|
||||
yield ('CC', ClassifyAndCount(cls(classifier_trained)))
|
||||
yield ('PACC', PACC(cls(classifier_trained), val_split=5, n_jobs=-1))
|
||||
yield ('EMQ', EMQ(cls(classifier_trained), exact_train_prev=True))
|
||||
yield ('EMQh', EMQ(cls(classifier_trained), exact_train_prev=False))
|
||||
yield ('EMQ-BCTS', EMQ(cls(classifier_trained), exact_train_prev=False, recalib='bcts'))
|
||||
yield ('EMQ-TS', EMQ(cls(classifier_trained), exact_train_prev=False, recalib='ts'))
|
||||
yield ('EMQ-NBVS', EMQ(cls(classifier_trained), exact_train_prev=False, recalib='nbvs'))
|
||||
# yield ('EMQ-VS', EMQ(cls(classifier_trained), exact_train_prev=False, recalib='vs'))
|
||||
yield ('PCC', PCC(cls(classifier_trained)))
|
||||
yield ('ACC', ACC(cls(classifier_trained), val_split=5, n_jobs=-1))
|
||||
yield ('KDE001', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.001))
|
||||
yield ('KDE005', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.005)) # <-- wow!
|
||||
yield ('KDE01', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.01))
|
||||
yield ('KDE02', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.02))
|
||||
yield ('KDE03', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.03))
|
||||
yield ('KDE05', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.05))
|
||||
yield ('KDE07', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.07))
|
||||
yield ('KDE10', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.10))
|
||||
yield ('MLPE', MaximumLikelihoodPrevalenceEstimation())
|
||||
|
||||
|
||||
def train_classifier():
|
||||
tfidf = TfidfVectorizer(sublinear_tf=True, min_df=10)
|
||||
training = LabelledCollection.load(train_path, loader_func=load_txt_sample, verbose=True, parse_columns=False)
|
||||
|
||||
if REDUCE_TR > 0:
|
||||
print('Reducing the number of documents in the training to', REDUCE_TR)
|
||||
training = training.sampling(REDUCE_TR, *training.prevalence())
|
||||
|
||||
Xtr, ytr = training.Xy
|
||||
Xtr = tfidf.fit_transform(Xtr)
|
||||
print('L orig shape = ', Xtr.shape)
|
||||
|
||||
training = LabelledCollection(Xtr, ytr)
|
||||
|
||||
print('training classifier')
|
||||
classifier_trained = LogisticRegression()
|
||||
classifier_trained = GridSearchCV(classifier_trained,
|
||||
param_grid={'C': np.logspace(-3, 3, 7), 'class_weight': ['balanced', None]},
|
||||
n_jobs=-1, cv=5)
|
||||
classifier_trained.fit(Xtr, ytr)
|
||||
classifier_trained = classifier_trained.best_estimator_
|
||||
trained = True
|
||||
print('[Done!]')
|
||||
|
||||
classes = training.classes_
|
||||
|
||||
print('training classes:', classes)
|
||||
print('training prevalence:', training.prevalence())
|
||||
|
||||
return tfidf, classifier_trained
|
||||
|
||||
|
||||
|
||||
RANK_AT_K = 1000
|
||||
REDUCE_TR = 50000
|
||||
qp.environ['SAMPLE_SIZE'] = RANK_AT_K
|
||||
|
||||
data_path = './50_50_split_trec'
|
||||
train_path = join(data_path, 'train_50_50_continent.txt')
|
||||
|
||||
tfidf, classifier_trained = qp.util.pickled_resource('classifier.pkl', train_classifier)
|
||||
trained=True
|
||||
|
||||
experiment_prot = RetrievedSamples(data_path,
|
||||
load_fn=load_txt_sample,
|
||||
vectorizer=tfidf,
|
||||
max_train_lines=None,
|
||||
max_test_lines=RANK_AT_K, classes=classifier_trained.classes_)
|
||||
|
||||
result_mae_dict = {}
|
||||
result_mrae_dict = {}
|
||||
for method_name, quantifier in methods(classifier_trained):
|
||||
# print('Starting with method=', method_name)
|
||||
|
||||
mae_errors = []
|
||||
mrae_errors = []
|
||||
pbar = tqdm(experiment_prot(), total=49)
|
||||
for train, test in pbar:
|
||||
if train is not None:
|
||||
try:
|
||||
|
||||
# print(train.prevalence())
|
||||
# print(test.prevalence())
|
||||
if trained and method_name!='MLPE':
|
||||
quantifier.fit(train, val_split=train, fit_classifier=False)
|
||||
else:
|
||||
quantifier.fit(train)
|
||||
estim_prev = quantifier.quantify(test.instances)
|
||||
|
||||
mae = qp.error.mae(test.prevalence(), estim_prev)
|
||||
mae_errors.append(mae)
|
||||
|
||||
mrae = qp.error.mrae(test.prevalence(), estim_prev)
|
||||
mrae_errors.append(mrae)
|
||||
|
||||
# print()
|
||||
# print('Training prevalence:', F.strprev(train.prevalence()), 'shape', train.X.shape)
|
||||
# print('Test prevalence:', F.strprev(test.prevalence()), 'shape', test.X.shape)
|
||||
# print('Estim prevalence:', F.strprev(estim_prev))
|
||||
|
||||
except Exception as e:
|
||||
print(f'wow, something happened here! skipping; {e}')
|
||||
else:
|
||||
print('skipping one!')
|
||||
|
||||
pbar.set_description(f'{method_name}\tmae={np.mean(mae_errors):.4f}\tmrae={np.mean(mrae_errors):.4f}')
|
||||
print()
|
||||
result_mae_dict[method_name] = np.mean(mae_errors)
|
||||
result_mrae_dict[method_name] = np.mean(mrae_errors)
|
||||
|
||||
print('Results\n'+('-'*100))
|
||||
for method_name in result_mae_dict.keys():
|
||||
MAE = result_mae_dict[method_name]
|
||||
MRAE = result_mrae_dict[method_name]
|
||||
print(f'{method_name}\t{MAE=:.5f}\t{MRAE=:.5f}')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue