forked from moreo/QuaPy
Merge branch 'protocols' of github.com:HLT-ISTI/QuaPy into protocols
This commit is contained in:
commit
1d4fa40f3e
|
@ -4,6 +4,7 @@ from matplotlib.cm import get_cmap
|
|||
import numpy as np
|
||||
from matplotlib import cm
|
||||
from scipy.stats import ttest_ind_from_stats
|
||||
from matplotlib.ticker import ScalarFormatter
|
||||
|
||||
import quapy as qp
|
||||
|
||||
|
@ -212,6 +213,7 @@ def binary_bias_bins(method_names, true_prevs, estim_prevs, pos_class=1, title=N
|
|||
def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs,
|
||||
n_bins=20, error_name='ae', show_std=False,
|
||||
show_density=True,
|
||||
show_legend=True,
|
||||
logscale=False,
|
||||
title=f'Quantification error as a function of distribution shift',
|
||||
vlines=None,
|
||||
|
@ -234,6 +236,7 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs,
|
|||
:param error_name: a string representing the name of an error function (as defined in `quapy.error`, default is "ae")
|
||||
:param show_std: whether or not to show standard deviations as color bands (default is False)
|
||||
:param show_density: whether or not to display the distribution of experiments for each bin (default is True)
|
||||
:param show_density: whether or not to display the legend of the chart (default is True)
|
||||
:param logscale: whether or not to log-scale the y-error measure (default is False)
|
||||
:param title: title of the plot (default is "Quantification error as a function of distribution shift")
|
||||
:param vlines: array-like list of values (default is None). If indicated, highlights some regions of the space
|
||||
|
@ -254,6 +257,9 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs,
|
|||
# x_error function) and 'y' is the estim-test shift (computed as according to y_error)
|
||||
data = _join_data_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, x_error, y_error, method_order)
|
||||
|
||||
if method_order is None:
|
||||
method_order = method_names
|
||||
|
||||
_set_colors(ax, n_methods=len(method_order))
|
||||
|
||||
bins = np.linspace(0, 1, n_bins+1)
|
||||
|
@ -264,7 +270,11 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs,
|
|||
tr_test_drifts = data[method]['x']
|
||||
method_drifts = data[method]['y']
|
||||
if logscale:
|
||||
method_drifts=np.log(1+method_drifts)
|
||||
ax.set_yscale("log")
|
||||
ax.yaxis.set_major_formatter(ScalarFormatter())
|
||||
ax.yaxis.set_minor_formatter(ScalarFormatter())
|
||||
ax.yaxis.get_major_formatter().set_scientific(False)
|
||||
ax.yaxis.get_minor_formatter().set_scientific(False)
|
||||
|
||||
inds = np.digitize(tr_test_drifts, bins, right=True)
|
||||
|
||||
|
@ -295,8 +305,14 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs,
|
|||
ax.fill_between(xs, ys-ystds, ys+ystds, alpha=0.25)
|
||||
|
||||
if show_density:
|
||||
ax.bar([ind * binwidth-binwidth/2 for ind in range(len(bins))],
|
||||
ax2 = ax.twinx()
|
||||
ax2.bar([ind * binwidth-binwidth/2 for ind in range(len(bins))],
|
||||
max_y*npoints/np.max(npoints), alpha=0.15, color='g', width=binwidth, label='density')
|
||||
#ax2.set_ylabel("bar data")
|
||||
ax2.set_ylim(0,1)
|
||||
ax2.spines['right'].set_color('g')
|
||||
ax2.tick_params(axis='y', colors='g')
|
||||
#ax2.yaxis.set_visible(False)
|
||||
|
||||
ax.set(xlabel=f'Distribution shift between training set and test sample',
|
||||
ylabel=f'{error_name.upper()} (true distribution, predicted distribution)',
|
||||
|
@ -306,8 +322,12 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs,
|
|||
if vlines:
|
||||
for vline in vlines:
|
||||
ax.axvline(vline, 0, 1, linestyle='--', color='k')
|
||||
ax.set_xlim(0, max_x)
|
||||
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
||||
|
||||
|
||||
ax.set_xlim(min_x, max_x)
|
||||
|
||||
if show_legend:
|
||||
fig.legend(loc='right')
|
||||
|
||||
_save_or_show(savepath)
|
||||
|
||||
|
|
Loading…
Reference in New Issue