1
0
Fork 0

doing tests with quantification stumps

This commit is contained in:
Alejandro Moreo Fernandez 2021-11-18 16:57:50 +01:00
parent 06d36a132d
commit 1ae45f8b9f
3 changed files with 6 additions and 5 deletions

View File

@ -28,7 +28,8 @@ Possible extensions:
- better investigate the "iterative" nature of the method.
- better investigate the implications with other learners. E.g., using EMQ as a prompt, or using EMQ in the second
stage (test).
- test with SVM
- test with SVM (not working well... and problematic due to the fact that svms need to be calibrated)
- test in multiclass scenarios
"""
class ClassWeightPCC(BaseQuantifier):

View File

@ -42,7 +42,7 @@ def quantification_models():
# yield 'pcc.opt', PCC(newLR()), lr_params
# yield 'pacc.opt', PACC(newLR()), lr_params
# yield 'wpacc.opt', ClassWeightPCC(), lr_params
yield 'ds', QuantificationStumpRegressor(SAMPLE_SIZE), None
yield 'ds', QuantificationStumpRegressor(SAMPLE_SIZE, 21, 10), None
# yield 'ds.opt', QuantificationStumpRegressor(SAMPLE_SIZE), {'C': __C_range}
# yield 'MAX', MAX(newLR()), lr_params
# yield 'MS', MS(newLR()), lr_params
@ -130,8 +130,8 @@ def run(experiment):
model,
test=data.test,
sample_size=SAMPLE_SIZE,
n_prevpoints=21,
n_repetitions=1,
n_prevpoints=21, # 21
n_repetitions=10, # 100
n_jobs=-1 if isinstance(model, qp.method.meta.Ensemble) else 1,
verbose=True
)

View File

@ -5,7 +5,7 @@ import sys, os
import pickle
import argparse
from common import *
from tc_experiments import *
from reviews_experiments import *
from tabular import Table
import itertools