1
0
Fork 0

adding calibration methods from the abstension package to quapy

This commit is contained in:
Alejandro Moreo Fernandez 2023-01-18 19:46:19 +01:00
parent 1d4fa40f3e
commit 09abcfc935
4 changed files with 191 additions and 5 deletions

View File

@ -34,7 +34,8 @@
- newer versions of numpy raise a warning when accessing types (e.g., np.float). I have replaced all such instances
with the plain python type (e.g., float).
- new dependency "abstention" (to add to the project requirements and setup)
- new dependency "abstention" (to add to the project requirements and setup). Calibration methods from
https://github.com/kundajelab/abstention added.
Things to fix:
- calibration with recalibration methods has to be fixed for exact_train_prev in EMQ (conflicts with clone, deepcopy, etc.)

View File

@ -0,0 +1,166 @@
from copy import deepcopy
from abstention.calibration import NoBiasVectorScaling, TempScaling, VectorScaling
from sklearn.base import BaseEstimator, clone
from sklearn.model_selection import cross_val_predict, train_test_split
import numpy as np
# Wrappers of calibration defined by Alexandari et al. in paper <http://proceedings.mlr.press/v119/alexandari20a.html>
# requires "pip install abstension"
# see https://github.com/kundajelab/abstention
class RecalibratedClassifier:
pass
class RecalibratedClassifierBase(BaseEstimator, RecalibratedClassifier):
"""
Applies a (re)calibration method from abstention.calibration, as defined in
`Alexandari et al. paper <http://proceedings.mlr.press/v119/alexandari20a.html>`_:
:param estimator: a scikit-learn probabilistic classifier
:param calibrator: the calibration object (an instance of abstention.calibration.CalibratorFactory)
:param val_split: indicate an integer k for performing kFCV to obtain the posterior prevalences, or a float p
in (0,1) to indicate that the posteriors are obtained in a stratified validation split containing p% of the
training instances (the rest is used for training). In any case, the classifier is retrained in the whole
training set afterwards.
:param n_jobs: indicate the number of parallel workers (only when val_split is an integer)
:param verbose: whether or not to display information in the standard output
"""
def __init__(self, estimator, calibrator, val_split=5, n_jobs=1, verbose=False):
self.estimator = estimator
self.calibrator = calibrator
self.val_split = val_split
self.n_jobs = n_jobs
self.verbose = verbose
def fit(self, X, y):
k = self.val_split
if isinstance(k, int):
if k < 2:
raise ValueError('wrong value for val_split: the number of folds must be > 2')
return self.fit_cv(X, y)
elif isinstance(k, float):
if not (0 < k < 1):
raise ValueError('wrong value for val_split: the proportion of validation documents must be in (0,1)')
return self.fit_cv(X, y)
def fit_cv(self, X, y):
posteriors = cross_val_predict(
self.estimator, X, y, cv=self.val_split, n_jobs=self.n_jobs, verbose=self.verbose, method="predict_proba"
)
self.estimator.fit(X, y)
nclasses = len(np.unique(y))
self.calibration_function = self.calibrator(posteriors, np.eye(nclasses)[y], posterior_supplied=True)
return self
def fit_tr_val(self, X, y):
Xtr, Xva, ytr, yva = train_test_split(X, y, test_size=self.val_split, stratify=y)
self.estimator.fit(Xtr, ytr)
posteriors = self.estimator.predict_proba(Xva)
nclasses = len(np.unique(yva))
self.calibrator = self.calibrator(posteriors, np.eye(nclasses)[yva], posterior_supplied=True)
return self
def predict(self, X):
return self.estimator.predict(X)
def predict_proba(self, X):
posteriors = self.estimator.predict_proba(X)
return self.calibration_function(posteriors)
@property
def classes_(self):
return self.estimator.classes_
class NBVSCalibration(RecalibratedClassifierBase):
"""
Applies the No-Bias Vector Scaling (NBVS) calibration method from abstention.calibration, as defined in
`Alexandari et al. paper <http://proceedings.mlr.press/v119/alexandari20a.html>`_:
:param estimator: a scikit-learn probabilistic classifier
:param val_split: indicate an integer k for performing kFCV to obtain the posterior prevalences, or a float p
in (0,1) to indicate that the posteriors are obtained in a stratified validation split containing p% of the
training instances (the rest is used for training). In any case, the classifier is retrained in the whole
training set afterwards.
:param n_jobs: indicate the number of parallel workers (only when val_split is an integer)
:param verbose: whether or not to display information in the standard output
"""
def __init__(self, estimator, val_split=5, n_jobs=1, verbose=False):
self.estimator = estimator
self.calibrator = NoBiasVectorScaling(verbose=verbose)
self.val_split = val_split
self.n_jobs = n_jobs
self.verbose = verbose
class BCTSCalibration(RecalibratedClassifierBase):
"""
Applies the Bias-Corrected Temperature Scaling (BCTS) calibration method from abstention.calibration, as defined in
`Alexandari et al. paper <http://proceedings.mlr.press/v119/alexandari20a.html>`_:
:param estimator: a scikit-learn probabilistic classifier
:param val_split: indicate an integer k for performing kFCV to obtain the posterior prevalences, or a float p
in (0,1) to indicate that the posteriors are obtained in a stratified validation split containing p% of the
training instances (the rest is used for training). In any case, the classifier is retrained in the whole
training set afterwards.
:param n_jobs: indicate the number of parallel workers (only when val_split is an integer)
:param verbose: whether or not to display information in the standard output
"""
def __init__(self, estimator, val_split=5, n_jobs=1, verbose=False):
self.estimator = estimator
self.calibrator = TempScaling(verbose=verbose, bias_positions='all')
self.val_split = val_split
self.n_jobs = n_jobs
self.verbose = verbose
class TSCalibration(RecalibratedClassifierBase):
"""
Applies the Temperature Scaling (TS) calibration method from abstention.calibration, as defined in
`Alexandari et al. paper <http://proceedings.mlr.press/v119/alexandari20a.html>`_:
:param estimator: a scikit-learn probabilistic classifier
:param val_split: indicate an integer k for performing kFCV to obtain the posterior prevalences, or a float p
in (0,1) to indicate that the posteriors are obtained in a stratified validation split containing p% of the
training instances (the rest is used for training). In any case, the classifier is retrained in the whole
training set afterwards.
:param n_jobs: indicate the number of parallel workers (only when val_split is an integer)
:param verbose: whether or not to display information in the standard output
"""
def __init__(self, estimator, val_split=5, n_jobs=1, verbose=False):
self.estimator = estimator
self.calibrator = TempScaling(verbose=verbose)
self.val_split = val_split
self.n_jobs = n_jobs
self.verbose = verbose
class VSCalibration(RecalibratedClassifierBase):
"""
Applies the Vector Scaling (VS) calibration method from abstention.calibration, as defined in
`Alexandari et al. paper <http://proceedings.mlr.press/v119/alexandari20a.html>`_:
:param estimator: a scikit-learn probabilistic classifier
:param val_split: indicate an integer k for performing kFCV to obtain the posterior prevalences, or a float p
in (0,1) to indicate that the posteriors are obtained in a stratified validation split containing p% of the
training instances (the rest is used for training). In any case, the classifier is retrained in the whole
training set afterwards.
:param n_jobs: indicate the number of parallel workers (only when val_split is an integer)
:param verbose: whether or not to display information in the standard output
"""
def __init__(self, estimator, val_split=5, n_jobs=1, verbose=False):
self.estimator = estimator
self.calibrator = VectorScaling(verbose=verbose)
self.val_split = val_split
self.n_jobs = n_jobs
self.verbose = verbose

View File

@ -10,7 +10,8 @@ from sklearn.model_selection import StratifiedKFold, cross_val_predict
from tqdm import tqdm
import quapy as qp
import quapy.functional as F
from classification.calibration import RecalibratedClassifier
from classification.calibration import RecalibratedClassifier, NBVSCalibration, BCTSCalibration, TSCalibration, \
VSCalibration
from quapy.classification.svmperf import SVMperf
from quapy.data import LabelledCollection
from quapy.method.base import BaseQuantifier, BinaryQuantifier
@ -138,8 +139,11 @@ class AggregativeProbabilisticQuantifier(AggregativeQuantifier):
else:
key_prefix = 'base_estimator__'
parameters = {key_prefix + k: v for k, v in parameters.items()}
elif isinstance(self.learner, RecalibratedClassifier):
parameters = {'estimator__' + k: v for k, v in parameters.items()}
self.learner.set_params(**parameters)
return self
# Helper
@ -511,22 +515,38 @@ class EMQ(AggregativeProbabilisticQuantifier):
or set to False for computing the training prevalence as an estimate, akin to PCC, i.e., as the expected
value of the posterior probabilities of the training instances as suggested in
`Alexandari et al. paper <http://proceedings.mlr.press/v119/alexandari20a.html>`_:
:param recalib: a string indicating the method of recalibration. Available choices include "nbvs" (No-Bias Vector
Scaling), "bcts" (Bias-Corrected Temperature Scaling), "ts" (Temperature Scaling), and "vs" (Vector Scaling).
The default value is None, indicating no recalibration.
"""
MAX_ITER = 1000
EPSILON = 1e-4
def __init__(self, learner: BaseEstimator, exact_train_prev=True):
def __init__(self, learner: BaseEstimator, exact_train_prev=True, recalib=None):
self.learner = learner
self.exact_train_prev = exact_train_prev
self.recalib = recalib
def fit(self, data: LabelledCollection, fit_learner=True):
if self.recalib is not None:
if self.recalib == 'nbvs':
self.learner = NBVSCalibration(self.learner)
elif self.recalib == 'bcts':
self.learner = BCTSCalibration(self.learner)
elif self.recalib == 'ts':
self.learner = TSCalibration(self.learner)
elif self.recalib == 'vs':
self.learner = VSCalibration(self.learner)
else:
raise ValueError('invalid param argument for recalibration method; available ones are '
'"nbvs", "bcts", "ts", and "vs".')
self.learner, _ = _training_helper(self.learner, data, fit_learner, ensure_probabilistic=True)
if self.exact_train_prev:
self.train_prevalence = F.prevalence_from_labels(data.labels, self.classes_)
else:
self.train_prevalence = qp.model_selection.cross_val_predict(
quantifier=PCC(clone(self.learner)),
quantifier=PCC(deepcopy(self.learner)),
data=data,
nfolds=3,
random_state=0

View File

@ -323,7 +323,6 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs,
for vline in vlines:
ax.axvline(vline, 0, 1, linestyle='--', color='k')
ax.set_xlim(min_x, max_x)
if show_legend: