1
0
Fork 0
QuaPy/quapy/data/preprocessing.py

151 lines
7.0 KiB
Python
Raw Normal View History

2020-12-03 16:36:54 +01:00
import numpy as np
2020-12-03 16:24:21 +01:00
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from data.base import Dataset
2020-12-03 16:24:21 +01:00
from scipy.sparse import spmatrix
from utils.util import parallelize
from .base import LabelledCollection
from tqdm import tqdm
2020-12-03 16:24:21 +01:00
def text2tfidf(dataset:Dataset, min_df=3, sublinear_tf=True, inplace=False, **kwargs):
"""
Transforms a Dataset of textual instances into a Dataset of tfidf weighted sparse vectors
:param dataset: a Dataset where the instances are lists of str
:param min_df: minimum number of occurrences for a word to be considered as part of the vocabulary
:param sublinear_tf: whether or not to apply the log scalling to the tf counters
:param inplace: whether or not to apply the transformation inplace, or to a new copy
:param kwargs: the rest of parameters of the transformation (as for sklearn.feature_extraction.text.TfidfVectorizer)
:return: a new Dataset in csr_matrix format (if inplace=False) or a reference to the current Dataset (inplace=True)
where the instances are stored in a csr_matrix of real-valued tfidf scores
"""
2020-12-03 16:36:54 +01:00
__check_type(dataset.training.instances, np.ndarray, str)
__check_type(dataset.test.instances, np.ndarray, str)
2020-12-03 16:24:21 +01:00
vectorizer = TfidfVectorizer(min_df=min_df, sublinear_tf=sublinear_tf, **kwargs)
training_documents = vectorizer.fit_transform(dataset.training.instances)
test_documents = vectorizer.transform(dataset.test.instances)
if inplace:
dataset.training = LabelledCollection(training_documents, dataset.training.labels, dataset.n_classes)
dataset.test = LabelledCollection(test_documents, dataset.test.labels, dataset.n_classes)
dataset.vocabulary = vectorizer.vocabulary_
return dataset
else:
training = LabelledCollection(training_documents, dataset.training.labels.copy(), dataset.n_classes)
test = LabelledCollection(test_documents, dataset.test.labels.copy(), dataset.n_classes)
return Dataset(training, test, vectorizer.vocabulary_)
def reduce_columns(dataset:Dataset, min_df=5, inplace=False):
"""
Reduces the dimensionality of the csr_matrix by removing the columns of words which are not present in at least
_min_occurrences_ instances
:param dataset: a Dataset in sparse format (any subtype of scipy.sparse.spmatrix)
:param min_df: minimum number of instances below which the columns are removed
:param inplace: whether or not to apply the transformation inplace, or to a new copy
:return: a new Dataset (if inplace=False) or a reference to the current Dataset (inplace=True)
where the dimensions corresponding to infrequent instances have been removed
"""
2020-12-03 16:36:54 +01:00
__check_type(dataset.training.instances, spmatrix)
__check_type(dataset.test.instances, spmatrix)
2020-12-03 16:24:21 +01:00
assert dataset.training.instances.shape[1] == dataset.test.instances.shape[1], 'unaligned vector spaces'
def filter_by_occurrences(X, W):
column_prevalence = np.asarray((X > 0).sum(axis=0)).flatten()
take_columns = column_prevalence >= min_df
X = X[:, take_columns]
W = W[:, take_columns]
return X, W
Xtr, Xte = filter_by_occurrences(dataset.training.instances, dataset.test.instances)
if inplace:
dataset.training.instances = Xtr
dataset.test.instances = Xte
return dataset
else:
training = LabelledCollection(Xtr, dataset.training.labels.copy(), dataset.n_classes)
test = LabelledCollection(Xte, dataset.test.labels.copy(), dataset.n_classes)
return Dataset(training, test)
def index(dataset: Dataset, min_df=5, inplace=False, **kwargs):
"""
Indexes a dataset of strings. To index a document means to replace each different token by a unique numerical index.
Rare words (i.e., words occurring less than _min_df_ times) are replaced by a special token UNK
:param dataset: a Dataset where the instances are lists of str
:param min_df: minimum number of instances below which the term is replaced by a UNK index
:param inplace: whether or not to apply the transformation inplace, or to a new copy
:param kwargs: the rest of parameters of the transformation (as for sklearn.feature_extraction.text.CountVectorizer)
:return: a new Dataset (if inplace=False) or a reference to the current Dataset (inplace=True)
consisting of lists of integer values representing indices.
"""
__check_type(dataset.training.instances, np.ndarray, str)
__check_type(dataset.test.instances, np.ndarray, str)
2020-12-03 16:24:21 +01:00
indexer = IndexTransformer(min_df=min_df, **kwargs)
training_index = indexer.fit_transform(dataset.training.instances)
test_index = indexer.transform(dataset.test.instances)
if inplace:
dataset.training = LabelledCollection(training_index, dataset.training.labels, dataset.n_classes)
dataset.test = LabelledCollection(test_index, dataset.test.labels, dataset.n_classes)
dataset.vocabulary = indexer.vocabulary_
return dataset
else:
training = LabelledCollection(training_index, dataset.training.labels.copy(), dataset.n_classes)
test = LabelledCollection(test_index, dataset.test.labels.copy(), dataset.n_classes)
return Dataset(training, test, indexer.vocabulary_)
def __check_type(container, container_type=None, element_type=None):
if container_type:
assert isinstance(container, container_type), \
f'unexpected type of container (expected {container_type}, found {type(container)})'
if element_type:
2020-12-03 16:36:54 +01:00
assert isinstance(container[0], element_type), \
2020-12-03 16:24:21 +01:00
f'unexpected type of element (expected {container_type}, found {type(container)})'
class IndexTransformer:
def __init__(self, **kwargs):
"""
:param kwargs: keyworded arguments from _sklearn.feature_extraction.text.CountVectorizer_
"""
self.vect = CountVectorizer(**kwargs)
self.unk = -1 # a valid index is assigned after fit
def fit(self, X):
"""
:param X: a list of strings
:return: self
"""
self.vect.fit(X)
self.analyzer = self.vect.build_analyzer()
self.vocabulary_ = self.vect.vocabulary_
self.unk = self.add_word('UNK')
return self
def transform(self, X, n_jobs=-1):
# given the number of tasks and the number of jobs, generates the slices for the parallel threads
assert self.unk > 0, 'transform called before fit'
indexed = parallelize(func=self.index, args=X, n_jobs=n_jobs)
return np.asarray(indexed)
def index(self, documents):
vocab = self.vocabulary_.copy()
return [[vocab.get(word, self.unk) for word in self.analyzer(doc)] for doc in tqdm(documents, 'indexing')]
def fit_transform(self, X, n_jobs=-1):
return self.fit(X).transform(X, n_jobs=n_jobs)
def vocabulary_size(self):
return len(self.vocabulary_)
2020-12-03 16:24:21 +01:00
def add_word(self, word):
if word in self.vocabulary_:
raise ValueError(f'word {word} already in dictionary')
self.vocabulary_[word] = len(self.vocabulary_)
return self.vocabulary_[word]