1
0
Fork 0
QuaPy/examples/_uci_experiments_checking_o...

137 lines
4.9 KiB
Python
Raw Normal View History

from copy import deepcopy
import quapy as qp
from sklearn.calibration import CalibratedClassifierCV
from sklearn.linear_model import LogisticRegression
from quapy.classification.methods import LowRankLogisticRegression
from quapy.method.meta import QuaNet
from quapy.protocol import APP
from quapy.method.aggregative import CC, ACC, PCC, PACC, MAX, MS, MS2, EMQ, HDy, newSVMAE, T50, X
from quapy.method.meta import EHDy
import numpy as np
import os
import pickle
import itertools
import argparse
import torch
import shutil
N_JOBS = -1
CUDA_N_JOBS = 2
ENSEMBLE_N_JOBS = -1
qp.environ['SAMPLE_SIZE'] = 100
def newLR():
return LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1)
def calibratedLR():
return CalibratedClassifierCV(LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1))
__C_range = np.logspace(-3, 3, 7)
lr_params = {'classifier__C': __C_range, 'classifier__class_weight': [None, 'balanced']}
svmperf_params = {'classifier__C': __C_range}
def quantification_models():
yield 'acc', ACC(newLR()), lr_params
yield 'T50', T50(newLR()), lr_params
yield 'X', X(newLR()), lr_params
yield 'MAX', MAX(newLR()), lr_params
yield 'MS', MS(newLR()), lr_params
yield 'MS2', MS2(newLR()), lr_params
def evaluate_experiment(true_prevalences, estim_prevalences):
print('\nEvaluation Metrics:\n' + '=' * 22)
for eval_measure in [qp.error.mae, qp.error.mrae]:
err = eval_measure(true_prevalences, estim_prevalences)
print(f'\t{eval_measure.__name__}={err:.4f}')
print()
def result_path(path, dataset_name, model_name, run, optim_loss):
return os.path.join(path, f'{dataset_name}-{model_name}-run{run}-{optim_loss}.pkl')
def is_already_computed(dataset_name, model_name, run, optim_loss):
return os.path.exists(result_path(args.results, dataset_name, model_name, run, optim_loss))
def save_results(dataset_name, model_name, run, optim_loss, *results):
rpath = result_path(args.results, dataset_name, model_name, run, optim_loss)
qp.util.create_parent_dir(rpath)
with open(rpath, 'wb') as foo:
pickle.dump(tuple(results), foo, pickle.HIGHEST_PROTOCOL)
def run(experiment):
optim_loss, dataset_name, (model_name, model, hyperparams) = experiment
if dataset_name in ['acute.a', 'acute.b', 'iris.1']: return
collection = qp.datasets.fetch_UCILabelledCollection(dataset_name)
for run, data in enumerate(qp.data.Dataset.kFCV(collection, nfolds=5, nrepeats=1)):
if is_already_computed(dataset_name, model_name, run=run, optim_loss=optim_loss):
print(f'result for dataset={dataset_name} model={model_name} loss={optim_loss} run={run+1}/5 already computed.')
continue
print(f'running dataset={dataset_name} model={model_name} loss={optim_loss} run={run+1}/5')
# model selection (hyperparameter optimization for a quantification-oriented loss)
train, test = data.train_test
train, val = train.split_stratified()
if hyperparams is not None:
model_selection = qp.model_selection.GridSearchQ(
deepcopy(model),
param_grid=hyperparams,
protocol=APP(val, n_prevalences=21, repeats=25),
error=optim_loss,
refit=True,
timeout=60*60,
verbose=True
)
model_selection.fit(data.training)
model = model_selection.best_model()
best_params = model_selection.best_params_
else:
model.fit(data.training)
best_params = {}
# model evaluation
true_prevalences, estim_prevalences = qp.evaluation.prediction(
model,
protocol=APP(test, n_prevalences=21, repeats=100)
)
test_true_prevalence = data.test.prevalence()
evaluate_experiment(true_prevalences, estim_prevalences)
save_results(dataset_name, model_name, run, optim_loss,
true_prevalences, estim_prevalences,
data.training.prevalence(), test_true_prevalence,
best_params)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Run experiments for Tweeter Sentiment Quantification')
parser.add_argument('--results', metavar='RESULT_PATH', type=str, default='results_tmp',
help='path to the directory where to store the results')
parser.add_argument('--svmperfpath', metavar='SVMPERF_PATH', type=str, default='../svm_perf_quantification',
help='path to the directory with svmperf')
args = parser.parse_args()
print(f'Result folder: {args.results}')
np.random.seed(0)
qp.environ['SVMPERF_HOME'] = args.svmperfpath
optim_losses = ['mae']
datasets = qp.datasets.UCI_DATASETS
models = quantification_models()
qp.util.parallel(run, itertools.product(optim_losses, datasets, models), n_jobs=N_JOBS)
shutil.rmtree(args.checkpointdir, ignore_errors=True)