1
0
Fork 0
QuaPy/examples/ifcb_experiments.py

41 lines
1.2 KiB
Python
Raw Normal View History

2023-11-08 11:07:47 +01:00
import quapy as qp
from sklearn.linear_model import LogisticRegression
from quapy.evaluation import evaluation_report
def newLR():
return LogisticRegression(n_jobs=-1)
2024-02-07 18:45:42 +01:00
<<<<<<< HEAD
quantifiers = [
('CC', qp.method.aggregative.CC(newLR())),
('ACC', qp.method.aggregative.ACC(newLR())),
('PCC', qp.method.aggregative.PCC(newLR())),
('PACC', qp.method.aggregative.PACC(newLR())),
('HDy', qp.method.aggregative.DMy(newLR())),
('EMQ', qp.method.aggregative.EMQ(newLR()))
]
for quant_name, quantifier in quantifiers:
2024-02-07 18:45:42 +01:00
=======
quantifiers = {'CC':qp.method.aggregative.CC(newLR()),
'ACC':qp.method.aggregative.ACC(newLR()),
'PCC':qp.method.aggregative.PCC(newLR()),
'PACC':qp.method.aggregative.PACC(newLR()),
'HDy':qp.method.aggregative.DistributionMatching(newLR()),
'EMQ':qp.method.aggregative.EMQ(newLR())
}
for quant_name, quantifier in quantifiers.items():
>>>>>>> 5566e0c97ae1b49b30874b6610d7f5b062009271
2023-11-08 11:07:47 +01:00
print("Experiment with "+quant_name)
train, test_gen = qp.datasets.fetch_IFCB()
quantifier.fit(train)
report = evaluation_report(quantifier, protocol=test_gen, error_metrics=['mae'], verbose=True)
print(report.mean())