2021-01-15 08:33:39 +01:00
|
|
|
import numpy as np
|
|
|
|
import itertools
|
|
|
|
from scipy.stats import ttest_ind_from_stats, wilcoxon
|
|
|
|
|
|
|
|
|
|
|
|
class Table:
|
|
|
|
VALID_TESTS = [None, "wilcoxon", "ttest"]
|
|
|
|
|
2021-01-27 09:54:41 +01:00
|
|
|
def __init__(self, benchmarks, methods, lower_is_better=True, ttest='ttest', prec_mean=3,
|
2021-01-15 13:44:50 +01:00
|
|
|
clean_zero=False, show_std=False, prec_std=3, average=True, missing=None, missing_str='--', color=True):
|
2021-01-15 08:33:39 +01:00
|
|
|
assert ttest in self.VALID_TESTS, f'unknown test, valid are {self.VALID_TESTS}'
|
2021-01-15 13:44:50 +01:00
|
|
|
|
2021-01-27 09:54:41 +01:00
|
|
|
self.benchmarks = np.asarray(benchmarks)
|
|
|
|
self.benchmark_index = {row:i for i, row in enumerate(benchmarks)}
|
2021-01-15 13:44:50 +01:00
|
|
|
|
2021-01-27 09:54:41 +01:00
|
|
|
self.methods = np.asarray(methods)
|
|
|
|
self.method_index = {col:j for j, col in enumerate(methods)}
|
2021-01-15 13:44:50 +01:00
|
|
|
|
|
|
|
self.map = {} # keyed (#rows,#cols)-ndarrays holding computations from self.map['values']
|
2021-01-15 08:33:39 +01:00
|
|
|
self._addmap('values', dtype=object)
|
|
|
|
self.lower_is_better = lower_is_better
|
|
|
|
self.ttest = ttest
|
|
|
|
self.prec_mean = prec_mean
|
|
|
|
self.clean_zero = clean_zero
|
|
|
|
self.show_std = show_std
|
|
|
|
self.prec_std = prec_std
|
2021-01-15 13:44:50 +01:00
|
|
|
self.add_average = average
|
|
|
|
self.missing = missing
|
|
|
|
self.missing_str = missing_str
|
|
|
|
self.color = color
|
2021-01-15 08:33:39 +01:00
|
|
|
self.touch()
|
|
|
|
|
|
|
|
@property
|
2021-01-27 09:54:41 +01:00
|
|
|
def nbenchmarks(self):
|
|
|
|
return len(self.benchmarks)
|
2021-01-15 08:33:39 +01:00
|
|
|
|
|
|
|
@property
|
2021-01-27 09:54:41 +01:00
|
|
|
def nmethods(self):
|
|
|
|
return len(self.methods)
|
2021-01-15 08:33:39 +01:00
|
|
|
|
|
|
|
def touch(self):
|
|
|
|
self.modif = True
|
|
|
|
|
|
|
|
def update(self):
|
|
|
|
if self.modif:
|
|
|
|
self.compute()
|
|
|
|
|
|
|
|
def _getfilled(self):
|
|
|
|
return np.argwhere(self.map['fill'])
|
|
|
|
|
|
|
|
@property
|
|
|
|
def values(self):
|
|
|
|
return self.map['values']
|
|
|
|
|
|
|
|
def _indexes(self):
|
2021-01-27 09:54:41 +01:00
|
|
|
return itertools.product(range(self.nbenchmarks), range(self.nmethods))
|
2021-01-15 08:33:39 +01:00
|
|
|
|
2021-01-15 13:44:50 +01:00
|
|
|
def _addmap(self, map, dtype, func=None):
|
2021-01-27 09:54:41 +01:00
|
|
|
self.map[map] = np.empty((self.nbenchmarks, self.nmethods), dtype=dtype)
|
2021-01-15 13:44:50 +01:00
|
|
|
if func is None:
|
|
|
|
return
|
2021-01-15 08:33:39 +01:00
|
|
|
m = self.map[map]
|
2021-01-15 13:44:50 +01:00
|
|
|
f = func
|
2021-01-15 08:33:39 +01:00
|
|
|
if f is None:
|
|
|
|
return
|
|
|
|
indexes = self._indexes() if map == 'fill' else self._getfilled()
|
2021-01-15 13:44:50 +01:00
|
|
|
for i, j in indexes:
|
|
|
|
m[i, j] = f(self.values[i, j])
|
|
|
|
|
|
|
|
def _addrank(self):
|
2021-01-27 09:54:41 +01:00
|
|
|
for i in range(self.nbenchmarks):
|
2021-01-15 08:33:39 +01:00
|
|
|
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
|
|
|
col_means = [self.map['mean'][i,j] for j in filled_cols_idx]
|
|
|
|
ranked_cols_idx = filled_cols_idx[np.argsort(col_means)]
|
|
|
|
if not self.lower_is_better:
|
|
|
|
ranked_cols_idx = ranked_cols_idx[::-1]
|
|
|
|
self.map['rank'][i, ranked_cols_idx] = np.arange(1, len(filled_cols_idx)+1)
|
|
|
|
|
2021-01-15 13:44:50 +01:00
|
|
|
def _addcolor(self):
|
2021-01-27 09:54:41 +01:00
|
|
|
for i in range(self.nbenchmarks):
|
2021-01-15 08:33:39 +01:00
|
|
|
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
|
|
|
if filled_cols_idx.size==0:
|
|
|
|
continue
|
|
|
|
col_means = [self.map['mean'][i,j] for j in filled_cols_idx]
|
|
|
|
minval = min(col_means)
|
|
|
|
maxval = max(col_means)
|
|
|
|
for col_idx in filled_cols_idx:
|
|
|
|
val = self.map['mean'][i,col_idx]
|
|
|
|
norm = (maxval - minval)
|
|
|
|
if norm > 0:
|
|
|
|
normval = (val - minval) / norm
|
|
|
|
else:
|
|
|
|
normval = 0.5
|
|
|
|
if self.lower_is_better:
|
|
|
|
normval = 1 - normval
|
|
|
|
self.map['color'][i, col_idx] = color_red2green_01(normval)
|
|
|
|
|
2021-01-15 13:44:50 +01:00
|
|
|
|
2021-01-15 08:33:39 +01:00
|
|
|
def _run_ttest(self, row, col1, col2):
|
|
|
|
mean1 = self.map['mean'][row, col1]
|
|
|
|
std1 = self.map['std'][row, col1]
|
|
|
|
nobs1 = self.map['nobs'][row, col1]
|
|
|
|
mean2 = self.map['mean'][row, col2]
|
|
|
|
std2 = self.map['std'][row, col2]
|
|
|
|
nobs2 = self.map['nobs'][row, col2]
|
|
|
|
_, p_val = ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2)
|
|
|
|
return p_val
|
|
|
|
|
|
|
|
def _run_wilcoxon(self, row, col1, col2):
|
|
|
|
values1 = self.map['values'][row, col1]
|
|
|
|
values2 = self.map['values'][row, col2]
|
|
|
|
_, p_val = wilcoxon(values1, values2)
|
|
|
|
return p_val
|
|
|
|
|
2021-01-15 13:44:50 +01:00
|
|
|
def _addttest(self):
|
2021-01-15 08:33:39 +01:00
|
|
|
if self.ttest is None:
|
|
|
|
return
|
2021-01-27 09:54:41 +01:00
|
|
|
self.some_similar = [False]*self.nmethods
|
|
|
|
for i in range(self.nbenchmarks):
|
2021-01-15 08:33:39 +01:00
|
|
|
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
|
|
|
if len(filled_cols_idx) <= 1:
|
|
|
|
continue
|
|
|
|
col_means = [self.map['mean'][i,j] for j in filled_cols_idx]
|
|
|
|
best_pos = filled_cols_idx[np.argmin(col_means)]
|
|
|
|
|
|
|
|
for j in filled_cols_idx:
|
|
|
|
if j==best_pos:
|
|
|
|
continue
|
|
|
|
if self.ttest == 'ttest':
|
|
|
|
p_val = self._run_ttest(i, best_pos, j)
|
|
|
|
else:
|
|
|
|
p_val = self._run_wilcoxon(i, best_pos, j)
|
|
|
|
|
|
|
|
pval_outcome = pval_interpretation(p_val)
|
|
|
|
self.map['ttest'][i, j] = pval_outcome
|
|
|
|
if pval_outcome != 'Diff':
|
2021-01-15 13:44:50 +01:00
|
|
|
self.some_similar[j] = True
|
2021-01-15 08:33:39 +01:00
|
|
|
|
|
|
|
def compute(self):
|
2021-01-15 13:44:50 +01:00
|
|
|
self._addmap('fill', dtype=bool, func=lambda x: x is not None)
|
|
|
|
self._addmap('mean', dtype=float, func=np.mean)
|
|
|
|
self._addmap('std', dtype=float, func=np.std)
|
|
|
|
self._addmap('nobs', dtype=float, func=len)
|
|
|
|
self._addmap('rank', dtype=int, func=None)
|
|
|
|
self._addmap('color', dtype=object, func=None)
|
|
|
|
self._addmap('ttest', dtype=object, func=None)
|
|
|
|
self._addmap('latex', dtype=object, func=None)
|
|
|
|
self._addrank()
|
|
|
|
self._addcolor()
|
|
|
|
self._addttest()
|
|
|
|
if self.add_average:
|
|
|
|
self._addave()
|
2021-01-15 08:33:39 +01:00
|
|
|
self.modif = False
|
|
|
|
|
2021-01-15 13:44:50 +01:00
|
|
|
def _is_column_full(self, col):
|
2021-01-27 09:54:41 +01:00
|
|
|
return all(self.map['fill'][:, self.method_index[col]])
|
2021-01-15 13:44:50 +01:00
|
|
|
|
|
|
|
def _addave(self):
|
2021-01-27 09:54:41 +01:00
|
|
|
ave = Table(['ave'], self.methods, lower_is_better=self.lower_is_better, ttest=self.ttest, average=False,
|
2021-01-15 13:44:50 +01:00
|
|
|
missing=self.missing, missing_str=self.missing_str)
|
2021-01-27 09:54:41 +01:00
|
|
|
for col in self.methods:
|
2021-01-15 13:44:50 +01:00
|
|
|
values = None
|
|
|
|
if self._is_column_full(col):
|
|
|
|
if self.ttest == 'ttest':
|
2021-01-27 09:54:41 +01:00
|
|
|
values = np.asarray(self.map['mean'][:, self.method_index[col]])
|
2021-01-15 13:44:50 +01:00
|
|
|
else: # wilcoxon
|
2021-01-27 09:54:41 +01:00
|
|
|
values = np.concatenate(self.values[:, self.method_index[col]])
|
2021-01-15 13:44:50 +01:00
|
|
|
ave.add('ave', col, values)
|
|
|
|
self.average = ave
|
|
|
|
|
2021-01-27 09:54:41 +01:00
|
|
|
def add(self, benchmark, method, values):
|
2021-01-15 13:44:50 +01:00
|
|
|
if values is not None:
|
|
|
|
values = np.asarray(values)
|
|
|
|
if values.ndim==0:
|
|
|
|
values = values.flatten()
|
2021-01-27 09:54:41 +01:00
|
|
|
rid, cid = self._coordinates(benchmark, method)
|
2021-01-15 08:33:39 +01:00
|
|
|
self.map['values'][rid, cid] = values
|
|
|
|
self.touch()
|
|
|
|
|
2021-01-27 09:54:41 +01:00
|
|
|
def get(self, benchmark, method, attr='mean'):
|
2021-01-15 08:33:39 +01:00
|
|
|
self.update()
|
2021-01-15 13:44:50 +01:00
|
|
|
assert attr in self.map, f'unknwon attribute {attr}'
|
2021-01-27 09:54:41 +01:00
|
|
|
rid, cid = self._coordinates(benchmark, method)
|
2021-01-15 08:33:39 +01:00
|
|
|
if self.map['fill'][rid, cid]:
|
2021-01-15 13:44:50 +01:00
|
|
|
v = self.map[attr][rid, cid]
|
|
|
|
if v is None or (isinstance(v,float) and np.isnan(v)):
|
|
|
|
return self.missing
|
|
|
|
return v
|
|
|
|
else:
|
|
|
|
return self.missing
|
2021-01-15 08:33:39 +01:00
|
|
|
|
2021-01-15 13:44:50 +01:00
|
|
|
def _coordinates(self, row, col):
|
2021-01-27 09:54:41 +01:00
|
|
|
assert row in self.benchmark_index, f'row {row} out of range'
|
|
|
|
assert col in self.method_index, f'col {col} out of range'
|
|
|
|
rid = self.benchmark_index[row]
|
|
|
|
cid = self.method_index[col]
|
2021-01-15 08:33:39 +01:00
|
|
|
return rid, cid
|
|
|
|
|
2021-01-27 09:54:41 +01:00
|
|
|
def get_average(self, method, attr='mean'):
|
2021-01-15 13:44:50 +01:00
|
|
|
self.update()
|
|
|
|
if self.add_average:
|
2021-01-27 09:54:41 +01:00
|
|
|
return self.average.get('ave', method, attr=attr)
|
2021-01-15 13:44:50 +01:00
|
|
|
return None
|
2021-01-15 08:33:39 +01:00
|
|
|
|
2021-01-27 09:54:41 +01:00
|
|
|
def get_color(self, benchmark, method):
|
|
|
|
color = self.get(benchmark, method, attr='color')
|
2021-01-15 08:33:39 +01:00
|
|
|
if color is None:
|
|
|
|
return ''
|
|
|
|
return color
|
|
|
|
|
2021-01-27 09:54:41 +01:00
|
|
|
def latex(self, benchmark, method):
|
2021-01-15 08:33:39 +01:00
|
|
|
self.update()
|
2021-01-27 09:54:41 +01:00
|
|
|
i,j = self._coordinates(benchmark, method)
|
2021-01-15 08:33:39 +01:00
|
|
|
if self.map['fill'][i,j] == False:
|
2021-01-15 13:44:50 +01:00
|
|
|
return self.missing_str
|
2021-01-15 08:33:39 +01:00
|
|
|
|
|
|
|
mean = self.map['mean'][i,j]
|
|
|
|
l = f" {mean:.{self.prec_mean}f}"
|
|
|
|
if self.clean_zero:
|
|
|
|
l = l.replace(' 0.', '.')
|
|
|
|
|
|
|
|
isbest = self.map['rank'][i,j] == 1
|
|
|
|
if isbest:
|
2021-01-15 13:44:50 +01:00
|
|
|
l = "\\textbf{"+l.strip()+"}"
|
|
|
|
|
|
|
|
stat = ''
|
|
|
|
if self.ttest is not None and self.some_similar[j]:
|
|
|
|
test_label = self.map['ttest'][i,j]
|
|
|
|
if test_label == 'Sim':
|
|
|
|
stat = '^{\dag\phantom{\dag}}'
|
|
|
|
elif test_label == 'Same':
|
|
|
|
stat = '^{\ddag}'
|
|
|
|
elif isbest or test_label == 'Diff':
|
|
|
|
stat = '^{\phantom{\ddag}}'
|
|
|
|
|
|
|
|
std = ''
|
2021-01-15 08:33:39 +01:00
|
|
|
if self.show_std:
|
|
|
|
std = self.map['std'][i,j]
|
|
|
|
std = f" {std:.{self.prec_std}f}"
|
|
|
|
if self.clean_zero:
|
|
|
|
std = std.replace(' 0.', '.')
|
2021-01-15 13:44:50 +01:00
|
|
|
std = f" \pm {std:{self.prec_std}}"
|
2021-01-15 08:33:39 +01:00
|
|
|
|
2021-01-15 13:44:50 +01:00
|
|
|
if stat!='' or std!='':
|
|
|
|
l = f'{l}${stat}{std}$'
|
|
|
|
|
|
|
|
if self.color:
|
2021-01-15 08:33:39 +01:00
|
|
|
l += ' ' + self.map['color'][i,j]
|
|
|
|
|
|
|
|
return l
|
|
|
|
|
2021-01-27 09:54:41 +01:00
|
|
|
def latexTabular(self, benchmark_replace={}, method_replace={}, average=True):
|
2021-01-15 08:33:39 +01:00
|
|
|
tab = ' & '
|
2021-01-27 09:54:41 +01:00
|
|
|
tab += ' & '.join([method_replace.get(col, col) for col in self.methods])
|
2021-01-15 08:33:39 +01:00
|
|
|
tab += ' \\\\\hline\n'
|
2021-01-27 09:54:41 +01:00
|
|
|
for row in self.benchmarks:
|
|
|
|
rowname = benchmark_replace.get(row, row)
|
2021-01-15 08:33:39 +01:00
|
|
|
tab += rowname + ' & '
|
2021-01-15 13:44:50 +01:00
|
|
|
tab += self.latexRow(row)
|
2021-01-15 08:33:39 +01:00
|
|
|
|
|
|
|
if average:
|
2021-01-15 13:44:50 +01:00
|
|
|
tab += '\hline\n'
|
2021-01-15 08:33:39 +01:00
|
|
|
tab += 'Average & '
|
2021-01-15 13:44:50 +01:00
|
|
|
tab += self.latexAverage()
|
2021-01-15 08:33:39 +01:00
|
|
|
return tab
|
|
|
|
|
2021-01-27 09:54:41 +01:00
|
|
|
def latexRow(self, benchmark, endl='\\\\\hline\n'):
|
|
|
|
s = [self.latex(benchmark, col) for col in self.methods]
|
2021-01-15 08:33:39 +01:00
|
|
|
s = ' & '.join(s)
|
2021-01-15 13:44:50 +01:00
|
|
|
s += ' ' + endl
|
2021-01-15 08:33:39 +01:00
|
|
|
return s
|
|
|
|
|
2021-01-15 13:44:50 +01:00
|
|
|
def latexAverage(self, endl='\\\\\hline\n'):
|
|
|
|
if self.add_average:
|
|
|
|
return self.average.latexRow('ave', endl=endl)
|
|
|
|
|
|
|
|
def getRankTable(self):
|
2021-01-27 09:54:41 +01:00
|
|
|
t = Table(benchmarks=self.benchmarks, methods=self.methods, prec_mean=0, average=True)
|
2021-01-15 13:44:50 +01:00
|
|
|
for rid, cid in self._getfilled():
|
2021-01-27 09:54:41 +01:00
|
|
|
row = self.benchmarks[rid]
|
|
|
|
col = self.methods[cid]
|
2021-01-15 13:44:50 +01:00
|
|
|
t.add(row, col, self.get(row, col, 'rank'))
|
|
|
|
t.compute()
|
2021-01-15 08:33:39 +01:00
|
|
|
return t
|
|
|
|
|
2021-01-27 09:54:41 +01:00
|
|
|
|
|
|
|
def dropMethods(self, methods):
|
|
|
|
drop_index = [self.method_index[m] for m in methods]
|
|
|
|
new_methods = np.delete(self.methods, drop_index)
|
|
|
|
new_index = {col:j for j, col in enumerate(new_methods)}
|
|
|
|
|
|
|
|
self.map['values'] = self.values[:,np.asarray([self.method_index[m] for m in new_methods], dtype=int)]
|
|
|
|
self.methods = new_methods
|
|
|
|
self.method_index = new_index
|
|
|
|
self.touch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2021-01-15 08:33:39 +01:00
|
|
|
def pval_interpretation(p_val):
|
|
|
|
if 0.005 >= p_val:
|
|
|
|
return 'Diff'
|
|
|
|
elif 0.05 >= p_val > 0.005:
|
|
|
|
return 'Sim'
|
|
|
|
elif p_val > 0.05:
|
|
|
|
return 'Same'
|
|
|
|
|
|
|
|
|
|
|
|
def color_red2green_01(val, maxtone=50):
|
|
|
|
if np.isnan(val): return None
|
|
|
|
assert 0 <= val <= 1, f'val {val} out of range [0,1]'
|
|
|
|
|
|
|
|
# rescale to [-1,1]
|
|
|
|
val = val * 2 - 1
|
|
|
|
if val < 0:
|
|
|
|
color = 'red'
|
|
|
|
tone = maxtone * (-val)
|
|
|
|
else:
|
|
|
|
color = 'green'
|
|
|
|
tone = maxtone * val
|
|
|
|
return '\cellcolor{' + color + f'!{int(tone)}' + '}'
|
|
|
|
|