QuAcc/quacc/utils.py

109 lines
2.7 KiB
Python

import functools
import os
import shutil
from contextlib import ExitStack
from pathlib import Path
from urllib.request import urlretrieve
import pandas as pd
from joblib import Parallel, delayed
from tqdm import tqdm
from quacc import logger
from quacc.environment import env, environ
def combine_dataframes(dfs, df_index=[]) -> pd.DataFrame:
if len(dfs) < 1:
raise ValueError
if len(dfs) == 1:
return dfs[0]
df = dfs[0]
for ndf in dfs[1:]:
df = df.join(ndf.set_index(df_index), on=df_index)
return df
def avg_group_report(df: pd.DataFrame) -> pd.DataFrame:
def _reduce_func(s1, s2):
return {(n1, n2): v + s2[(n1, n2)] for ((n1, n2), v) in s1.items()}
lst = df.to_dict(orient="records")[1:-1]
summed_series = functools.reduce(_reduce_func, lst)
idx = df.columns.drop([("base", "T"), ("base", "F")])
avg_report = {
(n1, n2): (v / len(lst))
for ((n1, n2), v) in summed_series.items()
if n1 != "base"
}
return pd.DataFrame([avg_report], columns=idx)
def fmt_line_md(s):
return f"> {s} \n"
def create_dataser_dir(dir_name, update=False):
dataset_dir = Path(env.OUT_DIR_NAME) / dir_name
env.OUT_DIR = dataset_dir
if update:
os.makedirs(dataset_dir, exist_ok=True)
else:
shutil.rmtree(dataset_dir, ignore_errors=True)
os.makedirs(dataset_dir)
def get_quacc_home():
home = Path("~/quacc_home").expanduser()
os.makedirs(home, exist_ok=True)
return home
class TqdmUpTo(tqdm):
def update_to(self, b=1, bsize=1, tsize=None):
if tsize is not None:
self.total = tsize
self.update(b * bsize - self.n)
def download_file(url: str, downloaded_path: Path):
with TqdmUpTo(
unit="B",
unit_scale=True,
unit_divisor=1024,
miniters=1,
desc=downloaded_path.name,
) as t:
urlretrieve(url, filename=downloaded_path, reporthook=t.update_to)
def parallel(
func,
f_args=None,
parallel: Parallel = None,
n_jobs=1,
verbose=0,
_env: environ | dict = None,
seed=None,
):
f_args = f_args or []
if _env is None:
_env = {}
elif isinstance(_env, environ):
_env = _env.to_dict()
def wrapper(*args):
if seed is not None:
nonlocal _env
_env = _env | dict(_R_SEED=seed)
with env.load(_env):
return func(*args)
parallel = (
Parallel(n_jobs=n_jobs, verbose=verbose) if parallel is None else parallel
)
return parallel(delayed(wrapper)(*_args) for _args in f_args)