QuAcc/quacc/evaluation.py

157 lines
5.0 KiB
Python

import itertools
from quapy.protocol import (
OnLabelledCollectionProtocol,
AbstractStochasticSeededProtocol,
)
from typing import Iterable, Callable, Union
from .estimator import AccuracyEstimator
import pandas as pd
import numpy as np
import quacc.error as error
import statistics as stats
def estimate(
estimator: AccuracyEstimator,
protocol: AbstractStochasticSeededProtocol,
):
# ensure that the protocol returns a LabelledCollection for each iteration
protocol.collator = OnLabelledCollectionProtocol.get_collator("labelled_collection")
base_prevs, true_prevs, estim_prevs = [], [], []
for sample in protocol():
e_sample = estimator.extend(sample)
estim_prev = estimator.estimate(e_sample.X, ext=True)
# base_prevs.append(_prettyfloat(accuracy, sample.prevalence()))
# true_prevs.append(_prettyfloat(accuracy, e_sample.prevalence()))
# estim_prevs.append(_prettyfloat(accuracy, estim_prev))
base_prevs.append(sample.prevalence())
true_prevs.append(e_sample.prevalence())
estim_prevs.append(estim_prev)
return base_prevs, true_prevs, estim_prevs
_bprev_col_0 = ["base"]
_bprev_col_1 = ["0", "1"]
_prev_col_0 = ["true", "estim"]
_prev_col_1 = ["TN", "FP", "FN", "TP"]
_err_col_0 = ["errors"]
def _report_columns(err_names):
bprev_cols = list(itertools.product(_bprev_col_0, _bprev_col_1))
prev_cols = list(itertools.product(_prev_col_0, _prev_col_1))
err_1 = err_names
err_cols = list(itertools.product(_err_col_0, err_1))
cols = bprev_cols + prev_cols + err_cols
return pd.MultiIndex.from_tuples(cols)
def _report_avg_groupby_distribution(lst, error_names):
def _bprev(s):
return (s[("base", "0")], s[("base", "1")])
def _normalize_prev(r, prev_name):
raw_prev = [v for ((k0, k1), v) in r.items() if k0 == prev_name]
norm_prev = [v/sum(raw_prev) for v in raw_prev]
for n, v in zip(itertools.product([prev_name], _prev_col_1), norm_prev):
r[n] = v
return r
current_bprev = _bprev(lst[0])
bprev_cnt = 0
g_lst = [[]]
for s in lst:
if _bprev(s) == current_bprev:
g_lst[bprev_cnt].append(s)
else:
g_lst.append([])
bprev_cnt += 1
current_bprev = _bprev(s)
g_lst[bprev_cnt].append(s)
r_lst = []
for gs in g_lst:
assert len(gs) > 0
r = {}
r[("base", "0")], r[("base", "1")] = _bprev(gs[0])
for pn in itertools.product(_prev_col_0, _prev_col_1):
r[pn] = stats.mean(map(lambda s: s[pn], gs))
r = _normalize_prev(r, "true")
r = _normalize_prev(r, "estim")
for en in itertools.product(_err_col_0, error_names):
r[en] = stats.mean(map(lambda s: s[en], gs))
r_lst.append(r)
return r_lst
def evaluation_report(
estimator: AccuracyEstimator,
protocol: AbstractStochasticSeededProtocol,
error_metrics: Iterable[Union[str, Callable]] = "all",
aggregate: bool = True,
):
base_prevs, true_prevs, estim_prevs = estimate(estimator, protocol)
if error_metrics == "all":
error_metrics = ["ae", "f1"]
error_funcs = [
error.from_name(e) if isinstance(e, str) else e for e in error_metrics
]
assert all(hasattr(e, "__call__") for e in error_funcs), "invalid error function"
error_names = [e.__name__ for e in error_funcs]
error_cols = error_names.copy()
if "f1" in error_cols:
error_cols.remove("f1")
error_cols.extend(["f1_true", "f1_estim", "f1_dist"])
if "f1e" in error_cols:
error_cols.remove("f1e")
error_cols.extend(["f1e_true", "f1e_estim"])
# df_cols = ["base_prev", "true_prev", "estim_prev"] + error_names
df_cols = _report_columns(error_cols)
lst = []
for base_prev, true_prev, estim_prev in zip(base_prevs, true_prevs, estim_prevs):
prev_cols = list(itertools.product(_bprev_col_0, _bprev_col_1)) + list(
itertools.product(_prev_col_0, _prev_col_1)
)
series = {
k: v
for (k, v) in zip(
prev_cols, np.concatenate((base_prev, true_prev, estim_prev), axis=0)
)
}
for error_name, error_metric in zip(error_names, error_funcs):
if error_name == "f1e":
series[("errors", "f1e_true")] = error_metric(true_prev)
series[("errors", "f1e_estim")] = error_metric(estim_prev)
continue
if error_name == "f1":
f1_true, f1_estim = error_metric(true_prev), error_metric(estim_prev)
series[("errors", "f1_true")] = f1_true
series[("errors", "f1_estim")] = f1_estim
series[("errors", "f1_dist")] = abs(f1_estim - f1_true)
continue
score = error_metric(true_prev, estim_prev)
series[("errors", error_name)] = score
lst.append(series)
lst = _report_avg_groupby_distribution(lst, error_cols) if aggregate else lst
df = pd.DataFrame(lst, columns=df_cols)
return df