149 lines
4.8 KiB
Python
149 lines
4.8 KiB
Python
from typing import List, Optional, Self
|
|
|
|
import numpy as np
|
|
import math
|
|
import scipy.sparse as sp
|
|
from quapy.data import LabelledCollection
|
|
|
|
|
|
# Extended classes
|
|
#
|
|
# 0 ~ True 0
|
|
# 1 ~ False 1
|
|
# 2 ~ False 0
|
|
# 3 ~ True 1
|
|
# _____________________
|
|
# | | |
|
|
# | True 0 | False 1 |
|
|
# |__________|__________|
|
|
# | | |
|
|
# | False 0 | True 1 |
|
|
# |__________|__________|
|
|
#
|
|
class ExClassManager:
|
|
@staticmethod
|
|
def get_ex(n_classes: int, true_class: int, pred_class: int) -> int:
|
|
return true_class * n_classes + pred_class
|
|
|
|
@staticmethod
|
|
def get_pred(n_classes: int, ex_class: int) -> int:
|
|
return ex_class % n_classes
|
|
|
|
@staticmethod
|
|
def get_true(n_classes: int, ex_class: int) -> int:
|
|
return ex_class // n_classes
|
|
|
|
|
|
class ExtendedCollection(LabelledCollection):
|
|
def __init__(
|
|
self,
|
|
instances: np.ndarray | sp.csr_matrix,
|
|
labels: np.ndarray,
|
|
classes: Optional[List] = None,
|
|
):
|
|
super().__init__(instances, labels, classes=classes)
|
|
|
|
def split_by_pred(self) -> List[Self]:
|
|
_ncl = int(math.sqrt(self.n_classes))
|
|
_indexes = ExtendedCollection._split_index_by_pred(_ncl, self.instances)
|
|
if isinstance(self.instances, np.ndarray):
|
|
_instances = [
|
|
self.instances[ind] if ind.shape[0] > 0 else np.asarray([], dtype=int)
|
|
for ind in _indexes
|
|
]
|
|
elif isinstance(self.instances, sp.csr_matrix):
|
|
_instances = [
|
|
self.instances[ind]
|
|
if ind.shape[0] > 0
|
|
else sp.csr_matrix(np.empty((0, 0), dtype=int))
|
|
for ind in _indexes
|
|
]
|
|
_labels = [
|
|
np.asarray(
|
|
[
|
|
ExClassManager.get_true(_ncl, lbl)
|
|
for lbl in (self.labels[ind] if len(ind) > 0 else [])
|
|
],
|
|
dtype=int,
|
|
)
|
|
for ind in _indexes
|
|
]
|
|
return [
|
|
ExtendedCollection(inst, lbl, classes=range(0, _ncl))
|
|
for (inst, lbl) in zip(_instances, _labels)
|
|
]
|
|
|
|
@classmethod
|
|
def split_inst_by_pred(
|
|
cls, n_classes: int, instances: np.ndarray | sp.csr_matrix
|
|
) -> (List[np.ndarray | sp.csr_matrix], List[float]):
|
|
_indexes = cls._split_index_by_pred(n_classes, instances)
|
|
if isinstance(instances, np.ndarray):
|
|
_instances = [
|
|
instances[ind] if ind.shape[0] > 0 else np.asarray([], dtype=int)
|
|
for ind in _indexes
|
|
]
|
|
elif isinstance(instances, sp.csr_matrix):
|
|
_instances = [
|
|
instances[ind]
|
|
if ind.shape[0] > 0
|
|
else sp.csr_matrix(np.empty((0, 0), dtype=int))
|
|
for ind in _indexes
|
|
]
|
|
norms = [inst.shape[0] / instances.shape[0] for inst in _instances]
|
|
return _instances, norms
|
|
|
|
@classmethod
|
|
def _split_index_by_pred(
|
|
cls, n_classes: int, instances: np.ndarray | sp.csr_matrix
|
|
) -> List[np.ndarray]:
|
|
if isinstance(instances, np.ndarray):
|
|
_pred_label = [np.argmax(inst[-n_classes:], axis=0) for inst in instances]
|
|
elif isinstance(instances, sp.csr_matrix):
|
|
_pred_label = [
|
|
np.argmax(inst[:, -n_classes:].toarray().flatten(), axis=0)
|
|
for inst in instances
|
|
]
|
|
else:
|
|
raise ValueError("Unsupported matrix format")
|
|
|
|
return [
|
|
np.asarray([j for (j, x) in enumerate(_pred_label) if x == i], dtype=int)
|
|
for i in range(0, n_classes)
|
|
]
|
|
|
|
@classmethod
|
|
def extend_instances(
|
|
cls, instances: np.ndarray | sp.csr_matrix, pred_proba: np.ndarray
|
|
) -> np.ndarray | sp.csr_matrix:
|
|
if isinstance(instances, sp.csr_matrix):
|
|
_pred_proba = sp.csr_matrix(pred_proba)
|
|
n_x = sp.hstack([instances, _pred_proba])
|
|
elif isinstance(instances, np.ndarray):
|
|
n_x = np.concatenate((instances, pred_proba), axis=1)
|
|
else:
|
|
raise ValueError("Unsupported matrix format")
|
|
|
|
return n_x
|
|
|
|
@classmethod
|
|
def extend_collection(
|
|
cls, base: LabelledCollection, pred_proba: np.ndarray
|
|
) -> Self:
|
|
n_classes = base.n_classes
|
|
|
|
# n_X = [ X | predicted probs. ]
|
|
n_x = cls.extend_instances(base.X, pred_proba)
|
|
|
|
# n_y = (exptected y, predicted y)
|
|
pred = np.asarray([prob.argmax(axis=0) for prob in pred_proba])
|
|
n_y = np.asarray(
|
|
[
|
|
ExClassManager.get_ex(n_classes, true_class, pred_class)
|
|
for (true_class, pred_class) in zip(base.y, pred)
|
|
]
|
|
)
|
|
|
|
return ExtendedCollection(n_x, n_y, classes=[*range(0, n_classes * n_classes)])
|
|
|