QuAcc/quacc/error.py

166 lines
4.5 KiB
Python

from functools import wraps
from typing import List
import numpy as np
import quapy as qp
from sklearn.metrics import accuracy_score, f1_score
from quacc.legacy.data import ExtendedPrev
def from_name(err_name):
assert err_name in ERROR_NAMES, f"unknown error {err_name}"
callable_error = globals()[err_name]
return callable_error
# def f1(prev):
# # https://github.com/dice-group/gerbil/wiki/Precision,-Recall-and-F1-measure
# if prev[0] == 0 and prev[1] == 0 and prev[2] == 0:
# return 1.0
# elif prev[0] == 0 and prev[1] > 0 and prev[2] == 0:
# return 0.0
# elif prev[0] == 0 and prev[1] == 0 and prev[2] > 0:
# return float('NaN')
# else:
# recall = prev[0] / (prev[0] + prev[1])
# precision = prev[0] / (prev[0] + prev[2])
# return 2 * (precision * recall) / (precision + recall)
def nae(prevs: np.ndarray, prevs_hat: np.ndarray) -> np.ndarray:
_ae = qp.error.ae(prevs, prevs_hat)
# _zae = (2.0 * (1.0 - prevs.min())) / prevs.shape[1]
_zae = 2.0 / prevs.shape[1]
return _ae / _zae
def f1(prev: np.ndarray | ExtendedPrev) -> float:
if isinstance(prev, ExtendedPrev):
prev = prev.A
def _score(idx):
_tp = prev[idx, idx]
_fn = prev[idx, :].sum() - _tp
_fp = prev[:, idx].sum() - _tp
_den = 2.0 * _tp + _fp + _fn
return 0.0 if _den == 0.0 else (2.0 * _tp) / _den
if prev.shape[0] == 2:
return _score(1)
else:
_idxs = np.arange(prev.shape[0])
return np.array([_score(idx) for idx in _idxs]).mean()
def f1e(prev):
return 1 - f1(prev)
def acc(prev: np.ndarray | ExtendedPrev) -> float:
if isinstance(prev, ExtendedPrev):
prev = prev.A
return np.diag(prev).sum() / prev.sum()
def accd(
true_prevs: List[np.ndarray | ExtendedPrev],
estim_prevs: List[np.ndarray | ExtendedPrev],
) -> np.ndarray:
a_tp = np.array([acc(tp) for tp in true_prevs])
a_ep = np.array([acc(ep) for ep in estim_prevs])
return np.abs(a_tp - a_ep)
def maccd(
true_prevs: List[np.ndarray | ExtendedPrev],
estim_prevs: List[np.ndarray | ExtendedPrev],
) -> float:
return accd(true_prevs, estim_prevs).mean()
def from_contingency_table(param1, param2):
if (
param2 is None
and isinstance(param1, np.ndarray)
and param1.ndim == 2
and (param1.shape[0] == param1.shape[1])
):
return True
elif (
isinstance(param1, np.ndarray)
and isinstance(param2, np.ndarray)
and param1.shape == param2.shape
):
return False
else:
raise ValueError("parameters for evaluation function not understood")
def vanilla_acc_fn(param1, param2=None):
if from_contingency_table(param1, param2):
return _vanilla_acc_from_ct(param1)
else:
return accuracy_score(param1, param2)
def macrof1_fn(param1, param2=None):
if from_contingency_table(param1, param2):
return macro_f1_from_ct(param1)
else:
return f1_score(param1, param2, average="macro")
def _vanilla_acc_from_ct(cont_table):
return np.diag(cont_table).sum() / cont_table.sum()
def _f1_bin(tp, fp, fn):
if tp + fp + fn == 0:
return 1
else:
return (2 * tp) / (2 * tp + fp + fn)
def macro_f1_from_ct(cont_table):
n = cont_table.shape[0]
if n == 2:
tp = cont_table[1, 1]
fp = cont_table[0, 1]
fn = cont_table[1, 0]
return _f1_bin(tp, fp, fn)
f1_per_class = []
for i in range(n):
tp = cont_table[i, i]
fp = cont_table[:, i].sum() - tp
fn = cont_table[i, :].sum() - tp
f1_per_class.append(_f1_bin(tp, fp, fn))
return np.mean(f1_per_class)
def microf1(cont_table):
n = cont_table.shape[0]
if n == 2:
tp = cont_table[1, 1]
fp = cont_table[0, 1]
fn = cont_table[1, 0]
return _f1_bin(tp, fp, fn)
tp, fp, fn = 0, 0, 0
for i in range(n):
tp += cont_table[i, i]
fp += cont_table[:, i] - tp
fn += cont_table[i, :] - tp
return _f1_bin(tp, fp, fn)
ACCURACY_ERROR = {maccd}
ACCURACY_ERROR_SINGLE = {accd}
ACCURACY_ERROR_NAMES = {func.__name__ for func in ACCURACY_ERROR}
ACCURACY_ERROR_SINGLE_NAMES = {func.__name__ for func in ACCURACY_ERROR_SINGLE}
ERROR_NAMES = ACCURACY_ERROR_NAMES | ACCURACY_ERROR_SINGLE_NAMES