QuAcc/quacc/experiments/generators.py

135 lines
4.9 KiB
Python

import os
import numpy as np
import quapy as qp
from quapy.data.base import LabelledCollection
from quapy.data.datasets import (
TWITTER_SENTIMENT_DATASETS_TEST,
UCI_MULTICLASS_DATASETS,
)
from quapy.method.aggregative import EMQ
from sklearn.linear_model import LogisticRegression
from quacc.dataset import DatasetProvider as DP
from quacc.error import macrof1_fn, vanilla_acc_fn
from quacc.models.base import ClassifierAccuracyPrediction
from quacc.models.baselines import ATC, DoC
from quacc.models.cont_table import CAPContingencyTable, ContTableTransferCAP, NaiveCAP
from quacc.utils.commons import get_results_path
def gen_classifiers():
param_grid = {"C": np.logspace(-4, -4, 9), "class_weight": ["balanced", None]}
yield "LR", LogisticRegression()
# yield 'LR-opt', GridSearchCV(LogisticRegression(), param_grid, cv=5, n_jobs=-1)
# yield 'NB', GaussianNB()
# yield 'SVM(rbf)', SVC()
# yield 'SVM(linear)', LinearSVC()
def gen_multi_datasets(
only_names=False,
) -> [str, [LabelledCollection, LabelledCollection, LabelledCollection]]:
for dataset_name in np.setdiff1d(UCI_MULTICLASS_DATASETS, ["wine-quality"]):
if only_names:
yield dataset_name, None
else:
yield dataset_name, DP.uci_multiclass(dataset_name)
# yields the 20 newsgroups dataset
if only_names:
yield "20news", None
else:
yield "20news", DP.news20()
# yields the T1B@LeQua2022 (training) dataset
if only_names:
yield "T1B-LeQua2022", None
else:
yield "T1B-LeQua2022", DP.t1b_lequa2022()
def gen_tweet_datasets(
only_names=False,
) -> [str, [LabelledCollection, LabelledCollection, LabelledCollection]]:
for dataset_name in TWITTER_SENTIMENT_DATASETS_TEST:
if only_names:
yield dataset_name, None
else:
yield dataset_name, DP.twitter(dataset_name)
def gen_bin_datasets(
only_names=False,
) -> [str, [LabelledCollection, LabelledCollection, LabelledCollection]]:
_IMDB = [
"imdb",
]
_RCV1 = [
"CCAT",
"GCAT",
"MCAT",
]
for dn in _IMDB:
dval = None if only_names else DP.imdb()
yield dn, dval
for dn in _RCV1:
dval = None if only_names else DP.rcv1(dn)
yield dn, dval
def gen_CAP(h, acc_fn, with_oracle=False) -> [str, ClassifierAccuracyPrediction]:
### CAP methods ###
# yield 'SebCAP', SebastianiCAP(h, acc_fn, ACC)
# yield 'SebCAP-SLD', SebastianiCAP(h, acc_fn, EMQ, predict_train_prev=not with_oracle)
# yield 'SebCAP-KDE', SebastianiCAP(h, acc_fn, KDEyML)
# yield 'SebCAPweight', SebastianiCAP(h, acc_fn, ACC, alpha=0)
# yield 'PabCAP', PabloCAP(h, acc_fn, ACC)
# yield 'PabCAP-SLD-median', PabloCAP(h, acc_fn, EMQ, aggr='median')
### baselines ###
yield "ATC-MC", ATC(h, acc_fn, scoring_fn="maxconf")
# yield 'ATC-NE', ATC(h, acc_fn, scoring_fn='neg_entropy')
yield "DoC", DoC(h, acc_fn, sample_size=qp.environ["SAMPLE_SIZE"])
def gen_CAP_cont_table(h) -> [str, CAPContingencyTable]:
acc_fn = None
yield "Naive", NaiveCAP(h, acc_fn)
# yield "CT-PPS-EMQ", ContTableTransferCAP(h, acc_fn, EMQ(LogisticRegression()))
# yield 'CT-PPS-KDE', ContTableTransferCAP(h, acc_fn, KDEyML(LogisticRegression(class_weight='balanced'), bandwidth=0.01))
# yield 'CT-PPS-KDE05', ContTableTransferCAP(h, acc_fn, KDEyML(LogisticRegression(class_weight='balanced'), bandwidth=0.05))
# yield 'QuAcc(EMQ)nxn-noX', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()), add_posteriors=True, add_X=False)
# yield 'QuAcc(EMQ)nxn', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()))
# yield 'QuAcc(EMQ)nxn-MC', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()), add_maxconf=True)
# yield 'QuAcc(EMQ)nxn-NE', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()), add_negentropy=True)
# yield 'QuAcc(EMQ)nxn-MIS', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()), add_maxinfsoft=True)
# yield 'QuAcc(EMQ)1xn2', QuAcc1xN2(h, acc_fn, EMQ(LogisticRegression()))
# yield 'QuAcc(EMQ)1xn2', QuAcc1xN2(h, acc_fn, EMQ(LogisticRegression()))
# yield 'CT-PPSh-EMQ', ContTableTransferCAP(h, acc_fn, EMQ(LogisticRegression()), reuse_h=True)
# yield 'Equations-ACCh', NsquaredEquationsCAP(h, acc_fn, ACC, reuse_h=True)
# yield 'Equations-ACC', NsquaredEquationsCAP(h, acc_fn, ACC)
# yield 'Equations-SLD', NsquaredEquationsCAP(h, acc_fn, EMQ)
def get_method_names():
mock_h = LogisticRegression()
return [m for m, _ in gen_CAP(mock_h, None)] + [
m for m, _ in gen_CAP_cont_table(mock_h)
]
def gen_acc_measure():
yield "vanilla_accuracy", vanilla_acc_fn
yield "macro-F1", macrof1_fn
def any_missing(basedir, cls_name, dataset_name, method_name):
for acc_name, _ in gen_acc_measure():
if not os.path.exists(
get_results_path(basedir, cls_name, acc_name, dataset_name, method_name)
):
return True
return False