506 lines
17 KiB
Python
506 lines
17 KiB
Python
from abc import abstractmethod
|
|
from copy import deepcopy
|
|
|
|
import numpy as np
|
|
import quapy.functional as F
|
|
import scipy
|
|
from quapy.data.base import LabelledCollection as LC
|
|
from quapy.method.aggregative import AggregativeQuantifier
|
|
from quapy.method.base import BaseQuantifier
|
|
from scipy.sparse import csr_matrix, issparse
|
|
from sklearn.base import BaseEstimator
|
|
from sklearn.metrics import confusion_matrix
|
|
|
|
from quacc.models.base import ClassifierAccuracyPrediction
|
|
from quacc.models.utils import get_posteriors_from_h, max_conf, neg_entropy
|
|
|
|
|
|
class LabelledCollection(LC):
|
|
def empty_classes(self):
|
|
"""
|
|
Returns a np.ndarray of empty classes (classes present in self.classes_ but with
|
|
no positive instance). In case there is none, then an empty np.ndarray is returned
|
|
|
|
:return: np.ndarray
|
|
"""
|
|
idx = np.argwhere(self.counts() == 0).flatten()
|
|
return self.classes_[idx]
|
|
|
|
def non_empty_classes(self):
|
|
"""
|
|
Returns a np.ndarray of non-empty classes (classes present in self.classes_ but with
|
|
at least one positive instance). In case there is none, then an empty np.ndarray is returned
|
|
|
|
:return: np.ndarray
|
|
"""
|
|
idx = np.argwhere(self.counts() > 0).flatten()
|
|
return self.classes_[idx]
|
|
|
|
def has_empty_classes(self):
|
|
"""
|
|
Checks whether the collection has empty classes
|
|
|
|
:return: boolean
|
|
"""
|
|
return len(self.empty_classes()) > 0
|
|
|
|
def compact_classes(self):
|
|
"""
|
|
Generates a new LabelledCollection object with no empty classes. It also returns a np.ndarray of
|
|
indexes that correspond to the old indexes of the new self.classes_.
|
|
|
|
:return: (LabelledCollection, np.ndarray,)
|
|
"""
|
|
non_empty = self.non_empty_classes()
|
|
all_classes = self.classes_
|
|
old_pos = np.searchsorted(all_classes, non_empty)
|
|
non_empty_collection = LabelledCollection(*self.Xy, classes=non_empty)
|
|
return non_empty_collection, old_pos
|
|
|
|
|
|
class CAPContingencyTable(ClassifierAccuracyPrediction):
|
|
def __init__(self, h: BaseEstimator, acc: callable):
|
|
self.h = h
|
|
self.acc = acc
|
|
|
|
def predict(self, X, oracle_prev=None):
|
|
"""
|
|
Evaluates the accuracy function on the predicted contingency table
|
|
|
|
:param X: test data
|
|
:param oracle_prev: np.ndarray with the class prevalence of the test set as estimated by
|
|
an oracle. This is meant to test the effect of the errors in CAP that are explained by
|
|
the errors in quantification performance
|
|
:return: float
|
|
"""
|
|
cont_table = self.predict_ct(X, oracle_prev)
|
|
raw_acc = self.acc(cont_table)
|
|
norm_acc = np.clip(raw_acc, 0, 1)
|
|
return norm_acc
|
|
|
|
@abstractmethod
|
|
def predict_ct(self, X, oracle_prev=None):
|
|
"""
|
|
Predicts the contingency table for the test data
|
|
|
|
:param X: test data
|
|
:param oracle_prev: np.ndarray with the class prevalence of the test set as estimated by
|
|
an oracle. This is meant to test the effect of the errors in CAP that are explained by
|
|
the errors in quantification performance
|
|
:return: a contingency table
|
|
"""
|
|
...
|
|
|
|
|
|
class NaiveCAP(CAPContingencyTable):
|
|
"""
|
|
The Naive CAP is a method that relies on the IID assumption, and thus uses the estimation in the validation data
|
|
as an estimate for the test data.
|
|
"""
|
|
|
|
def __init__(self, h: BaseEstimator, acc: callable):
|
|
super().__init__(h, acc)
|
|
|
|
def fit(self, val: LabelledCollection):
|
|
y_hat = self.h.predict(val.X)
|
|
y_true = val.y
|
|
self.cont_table = confusion_matrix(y_true, y_pred=y_hat, labels=val.classes_)
|
|
return self
|
|
|
|
def predict_ct(self, test, oracle_prev=None):
|
|
"""
|
|
This method disregards the test set, under the assumption that it is IID wrt the training. This meaning that
|
|
the confusion matrix for the test data should coincide with the one computed for training (using any cross
|
|
validation strategy).
|
|
|
|
:param test: test collection (ignored)
|
|
:param oracle_prev: ignored
|
|
:return: a confusion matrix in the return format of `sklearn.metrics.confusion_matrix`
|
|
"""
|
|
return self.cont_table
|
|
|
|
|
|
class CAPContingencyTableQ(CAPContingencyTable):
|
|
def __init__(
|
|
self,
|
|
h: BaseEstimator,
|
|
acc: callable,
|
|
q_class: AggregativeQuantifier,
|
|
reuse_h=False,
|
|
):
|
|
super().__init__(h, acc)
|
|
self.reuse_h = reuse_h
|
|
if reuse_h:
|
|
assert isinstance(
|
|
q_class, AggregativeQuantifier
|
|
), f"quantifier {q_class} is not of type aggregative"
|
|
self.q = deepcopy(q_class)
|
|
self.q.set_params(classifier=h)
|
|
else:
|
|
self.q = q_class
|
|
|
|
def quantifier_fit(self, val: LabelledCollection):
|
|
if self.reuse_h:
|
|
self.q.fit(val, fit_classifier=False, val_split=val)
|
|
else:
|
|
self.q.fit(val)
|
|
|
|
|
|
class ContTableTransferCAP(CAPContingencyTableQ):
|
|
""" """
|
|
|
|
def __init__(self, h: BaseEstimator, acc: callable, q_class, reuse_h=False):
|
|
super().__init__(h, acc, q_class, reuse_h)
|
|
|
|
def fit(self, val: LabelledCollection):
|
|
y_hat = self.h.predict(val.X)
|
|
y_true = val.y
|
|
self.cont_table = confusion_matrix(
|
|
y_true=y_true, y_pred=y_hat, labels=val.classes_, normalize="all"
|
|
)
|
|
self.train_prev = val.prevalence()
|
|
self.quantifier_fit(val)
|
|
return self
|
|
|
|
def predict_ct(self, test, oracle_prev=None):
|
|
"""
|
|
:param test: test collection (ignored)
|
|
:param oracle_prev: np.ndarray with the class prevalence of the test set as estimated by
|
|
an oracle. This is meant to test the effect of the errors in CAP that are explained by
|
|
the errors in quantification performance
|
|
:return: a confusion matrix in the return format of `sklearn.metrics.confusion_matrix`
|
|
"""
|
|
if oracle_prev is None:
|
|
prev_hat = self.q.quantify(test)
|
|
else:
|
|
prev_hat = oracle_prev
|
|
adjustment = prev_hat / self.train_prev
|
|
return self.cont_table * adjustment[:, np.newaxis]
|
|
|
|
|
|
class NsquaredEquationsCAP(CAPContingencyTableQ):
|
|
""" """
|
|
|
|
def __init__(self, h: BaseEstimator, acc: callable, q_class, reuse_h=False):
|
|
super().__init__(h, acc, q_class, reuse_h)
|
|
|
|
def fit(self, val: LabelledCollection):
|
|
y_hat = self.h.predict(val.X)
|
|
y_true = val.y
|
|
self.cont_table = confusion_matrix(y_true, y_pred=y_hat, labels=val.classes_)
|
|
self.quantifier_fit(val)
|
|
self.A, self.partial_b = self._construct_equations()
|
|
return self
|
|
|
|
def _construct_equations(self):
|
|
# we need a n x n matrix of unknowns
|
|
n = self.cont_table.shape[1]
|
|
|
|
# I is the matrix of indexes of unknowns. For example, if we need the counts of
|
|
# all instances belonging to class i that have been classified as belonging to 0, 1, ..., n:
|
|
# the indexes of the corresponding unknowns are given by I[i,:]
|
|
I = np.arange(n * n).reshape(n, n)
|
|
|
|
# system of equations: Ax=b, A.shape=(n*n, n*n,), b.shape=(n*n,)
|
|
A = np.zeros(shape=(n * n, n * n))
|
|
b = np.zeros(shape=(n * n))
|
|
|
|
# first equation: the sum of all unknowns is 1
|
|
eq_no = 0
|
|
A[eq_no, :] = 1
|
|
b[eq_no] = 1
|
|
eq_no += 1
|
|
|
|
# (n-1)*(n-1) equations: the class cond rations should be the same in training and in test due to the
|
|
# PPS assumptions. Example in three classes, a ratio: a/(a+b+c) [test] = ar [a ratio in training]
|
|
# a / (a + b + c) = ar
|
|
# a = (a + b + c) * ar
|
|
# a = a ar + b ar + c ar
|
|
# a - a ar - b ar - c ar = 0
|
|
# a (1-ar) + b (-ar) + c (-ar) = 0
|
|
class_cond_ratios_tr = self.cont_table / self.cont_table.sum(
|
|
axis=1, keepdims=True
|
|
)
|
|
for i in range(1, n):
|
|
for j in range(1, n):
|
|
ratio_ij = class_cond_ratios_tr[i, j]
|
|
A[eq_no, I[i, :]] = -ratio_ij
|
|
A[eq_no, I[i, j]] = 1 - ratio_ij
|
|
b[eq_no] = 0
|
|
eq_no += 1
|
|
|
|
# n-1 equations: the sum of class-cond counts must equal the C&C prevalence prediction
|
|
for i in range(1, n):
|
|
A[eq_no, I[:, i]] = 1
|
|
# b[eq_no] = cc_prev_estim[i]
|
|
eq_no += 1
|
|
|
|
# n-1 equations: the sum of true true class-conditional positives must equal the class prev label in test
|
|
for i in range(1, n):
|
|
A[eq_no, I[i, :]] = 1
|
|
# b[eq_no] = q_prev_estim[i]
|
|
eq_no += 1
|
|
|
|
return A, b
|
|
|
|
def predict_ct(self, test, oracle_prev):
|
|
"""
|
|
:param test: test collection (ignored)
|
|
:param oracle_prev: np.ndarray with the class prevalence of the test set as estimated by
|
|
an oracle. This is meant to test the effect of the errors in CAP that are explained by
|
|
the errors in quantification performance
|
|
:return: a confusion matrix in the return format of `sklearn.metrics.confusion_matrix`
|
|
"""
|
|
|
|
n = self.cont_table.shape[1]
|
|
|
|
h_label_preds = self.h.predict(test)
|
|
cc_prev_estim = F.prevalence_from_labels(h_label_preds, self.h.classes_)
|
|
if oracle_prev is None:
|
|
q_prev_estim = self.q.quantify(test)
|
|
else:
|
|
q_prev_estim = oracle_prev
|
|
|
|
A = self.A
|
|
b = self.partial_b
|
|
|
|
# b is partially filled; we finish the vector by plugin in the classify and count
|
|
# prevalence estimates (n-1 values only), and the quantification estimates (n-1 values only)
|
|
|
|
b[-2 * (n - 1) : -(n - 1)] = cc_prev_estim[1:]
|
|
b[-(n - 1) :] = q_prev_estim[1:]
|
|
|
|
# try the fast solution (may not be valid)
|
|
x = np.linalg.solve(A, b)
|
|
|
|
if any(x < 0) or any(x > 0) or not np.isclose(x.sum(), 1):
|
|
print("L", end="")
|
|
|
|
# try the iterative solution
|
|
def loss(x):
|
|
return np.linalg.norm(A @ x - b, ord=2)
|
|
|
|
x = F.optim_minimize(loss, n_classes=n**2)
|
|
|
|
else:
|
|
print(".", end="")
|
|
|
|
cont_table_test = x.reshape(n, n)
|
|
return cont_table_test
|
|
|
|
|
|
class QuAcc:
|
|
def _get_X_dot(self, X):
|
|
h = self.h
|
|
|
|
P = get_posteriors_from_h(h, X)
|
|
|
|
add_covs = []
|
|
|
|
if self.add_posteriors:
|
|
add_covs.append(P[:, 1:])
|
|
|
|
if self.add_maxconf:
|
|
mc = max_conf(P, keepdims=True)
|
|
add_covs.append(mc)
|
|
|
|
if self.add_negentropy:
|
|
ne = neg_entropy(P, keepdims=True)
|
|
add_covs.append(ne)
|
|
|
|
if self.add_maxinfsoft:
|
|
lgP = np.log(P)
|
|
mis = np.max(lgP - lgP.mean(axis=1, keepdims=True), axis=1, keepdims=True)
|
|
add_covs.append(mis)
|
|
|
|
if len(add_covs) > 0:
|
|
X_dot = np.hstack(add_covs)
|
|
|
|
if self.add_X:
|
|
X_dot = safehstack(X, X_dot)
|
|
|
|
return X_dot
|
|
|
|
|
|
class QuAcc1xN2(CAPContingencyTableQ, QuAcc):
|
|
def __init__(
|
|
self,
|
|
h: BaseEstimator,
|
|
acc: callable,
|
|
q_class: AggregativeQuantifier,
|
|
add_X=True,
|
|
add_posteriors=True,
|
|
add_maxconf=False,
|
|
add_negentropy=False,
|
|
add_maxinfsoft=False,
|
|
):
|
|
self.h = h
|
|
self.acc = acc
|
|
self.q = EmptySafeQuantifier(q_class)
|
|
self.add_X = add_X
|
|
self.add_posteriors = add_posteriors
|
|
self.add_maxconf = add_maxconf
|
|
self.add_negentropy = add_negentropy
|
|
self.add_maxinfsoft = add_maxinfsoft
|
|
|
|
def fit(self, val: LabelledCollection):
|
|
pred_labels = self.h.predict(val.X)
|
|
true_labels = val.y
|
|
|
|
self.ncl = val.n_classes
|
|
classes_dot = np.arange(self.ncl**2)
|
|
ct_class_idx = classes_dot.reshape(self.ncl, self.ncl)
|
|
|
|
X_dot = self._get_X_dot(val.X)
|
|
y_dot = ct_class_idx[true_labels, pred_labels]
|
|
val_dot = LabelledCollection(X_dot, y_dot, classes=classes_dot)
|
|
self.q.fit(val_dot)
|
|
|
|
def predict_ct(self, X, oracle_prev=None):
|
|
X_dot = self._get_X_dot(X)
|
|
flat_ct = self.q.quantify(X_dot)
|
|
return flat_ct.reshape(self.ncl, self.ncl)
|
|
|
|
|
|
class QuAcc1xNp1(CAPContingencyTableQ, QuAcc):
|
|
def __init__(
|
|
self,
|
|
h: BaseEstimator,
|
|
acc: callable,
|
|
q_class: AggregativeQuantifier,
|
|
add_X=True,
|
|
add_posteriors=True,
|
|
add_maxconf=False,
|
|
add_negentropy=False,
|
|
add_maxinfsoft=False,
|
|
):
|
|
self.h = h
|
|
self.acc = acc
|
|
self.q = EmptySafeQuantifier(q_class)
|
|
self.add_X = add_X
|
|
self.add_posteriors = add_posteriors
|
|
self.add_maxconf = add_maxconf
|
|
self.add_negentropy = add_negentropy
|
|
self.add_maxinfsoft = add_maxinfsoft
|
|
|
|
def fit(self, val: LabelledCollection):
|
|
pred_labels = self.h.predict(val.X)
|
|
true_labels = val.y
|
|
|
|
self.ncl = val.n_classes
|
|
classes_dot = np.arange(self.ncl + 1)
|
|
# ct_class_idx = classes_dot.reshape(n, n)
|
|
ct_class_idx = np.full((self.ncl, self.ncl), self.ncl)
|
|
ct_class_idx[np.diag_indices(self.ncl)] = np.arange(self.ncl)
|
|
|
|
X_dot = self._get_X_dot(val.X)
|
|
y_dot = ct_class_idx[true_labels, pred_labels]
|
|
val_dot = LabelledCollection(X_dot, y_dot, classes=classes_dot)
|
|
self.q.fit(val_dot)
|
|
|
|
def _get_ct_hat(self, n, ct_compressed):
|
|
_diag_idx = np.diag_indices(n)
|
|
ct_rev_idx = (np.append(_diag_idx[0], 0), np.append(_diag_idx[1], 1))
|
|
ct_hat = np.zeros((n, n))
|
|
ct_hat[ct_rev_idx] = ct_compressed
|
|
return ct_hat
|
|
|
|
def predict_ct(self, X: LabelledCollection, oracle_prev=None):
|
|
X_dot = self._get_X_dot(X)
|
|
ct_compressed = self.q.quantify(X_dot)
|
|
return self._get_ct_hat(self.ncl, ct_compressed)
|
|
|
|
|
|
class QuAccNxN(CAPContingencyTableQ, QuAcc):
|
|
def __init__(
|
|
self,
|
|
h: BaseEstimator,
|
|
acc: callable,
|
|
q_class: AggregativeQuantifier,
|
|
add_X=True,
|
|
add_posteriors=True,
|
|
add_maxconf=False,
|
|
add_negentropy=False,
|
|
add_maxinfsoft=False,
|
|
):
|
|
self.h = h
|
|
self.acc = acc
|
|
self.q_class = q_class
|
|
self.add_X = add_X
|
|
self.add_posteriors = add_posteriors
|
|
self.add_maxconf = add_maxconf
|
|
self.add_negentropy = add_negentropy
|
|
self.add_maxinfsoft = add_maxinfsoft
|
|
|
|
def fit(self, val: LabelledCollection):
|
|
pred_labels = self.h.predict(val.X)
|
|
true_labels = val.y
|
|
X_dot = self._get_X_dot(val.X)
|
|
|
|
self.q = []
|
|
for class_i in self.h.classes_:
|
|
X_dot_i = X_dot[pred_labels == class_i]
|
|
y_i = true_labels[pred_labels == class_i]
|
|
data_i = LabelledCollection(X_dot_i, y_i, classes=val.classes_)
|
|
|
|
q_i = EmptySafeQuantifier(deepcopy(self.q_class))
|
|
q_i.fit(data_i)
|
|
self.q.append(q_i)
|
|
|
|
def predict_ct(self, X, oracle_prev=None):
|
|
classes = self.h.classes_
|
|
pred_labels = self.h.predict(X)
|
|
X_dot = self._get_X_dot(X)
|
|
pred_prev = F.prevalence_from_labels(pred_labels, classes)
|
|
cont_table = []
|
|
for class_i, q_i, p_i in zip(classes, self.q, pred_prev):
|
|
X_dot_i = X_dot[pred_labels == class_i]
|
|
classcond_cond_table_prevs = q_i.quantify(X_dot_i)
|
|
cond_table_prevs = p_i * classcond_cond_table_prevs
|
|
cont_table.append(cond_table_prevs)
|
|
cont_table = np.vstack(cont_table)
|
|
return cont_table
|
|
|
|
|
|
def safehstack(X, P):
|
|
if issparse(X) or issparse(P):
|
|
XP = scipy.sparse.hstack([X, P])
|
|
XP = csr_matrix(XP)
|
|
else:
|
|
XP = np.hstack([X, P])
|
|
return XP
|
|
|
|
|
|
class EmptySafeQuantifier(BaseQuantifier):
|
|
def __init__(self, surrogate_quantifier: BaseQuantifier):
|
|
self.surrogate = surrogate_quantifier
|
|
|
|
def fit(self, data: LabelledCollection):
|
|
self.n_classes = data.n_classes
|
|
class_compact_data, self.old_class_idx = data.compact_classes()
|
|
if self.num_non_empty_classes() > 1:
|
|
self.surrogate.fit(class_compact_data)
|
|
return self
|
|
|
|
def quantify(self, instances):
|
|
num_instances = instances.shape[0]
|
|
if self.num_non_empty_classes() == 0 or num_instances == 0:
|
|
# returns the uniform prevalence vector
|
|
uniform = np.full(
|
|
fill_value=1.0 / self.n_classes, shape=self.n_classes, dtype=float
|
|
)
|
|
return uniform
|
|
elif self.num_non_empty_classes() == 1:
|
|
# returns a prevalence vector with 100% of the mass in the only non empty class
|
|
prev_vector = np.full(fill_value=0.0, shape=self.n_classes, dtype=float)
|
|
prev_vector[self.old_class_idx[0]] = 1
|
|
return prev_vector
|
|
else:
|
|
class_compact_prev = self.surrogate.quantify(instances)
|
|
prev_vector = np.full(fill_value=0.0, shape=self.n_classes, dtype=float)
|
|
prev_vector[self.old_class_idx] = class_compact_prev
|
|
return prev_vector
|
|
|
|
def num_non_empty_classes(self):
|
|
return len(self.old_class_idx)
|