QuAcc/quacc/old_main.py

139 lines
4.4 KiB
Python

import numpy as np
import scipy as sp
import quapy as qp
from quapy.data import LabelledCollection
from quapy.method.aggregative import SLD
from quapy.protocol import APP, AbstractStochasticSeededProtocol
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_predict
from .data import get_dataset
# Extended classes
#
# 0 ~ True 0
# 1 ~ False 1
# 2 ~ False 0
# 3 ~ True 1
# _____________________
# | | |
# | True 0 | False 1 |
# |__________|__________|
# | | |
# | False 0 | True 1 |
# |__________|__________|
#
def get_ex_class(classes, true_class, pred_class):
return true_class * classes + pred_class
def extend_collection(coll, pred_prob):
n_classes = coll.n_classes
# n_X = [ X | predicted probs. ]
if isinstance(coll.X, sp.csr_matrix):
pred_prob_csr = sp.csr_matrix(pred_prob)
n_x = sp.hstack([coll.X, pred_prob_csr])
elif isinstance(coll.X, np.ndarray):
n_x = np.concatenate((coll.X, pred_prob), axis=1)
else:
raise ValueError("Unsupported matrix format")
# n_y = (exptected y, predicted y)
n_y = []
for i, true_class in enumerate(coll.y):
pred_class = pred_prob[i].argmax(axis=0)
n_y.append(get_ex_class(n_classes, true_class, pred_class))
return LabelledCollection(n_x, np.asarray(n_y), [*range(0, n_classes * n_classes)])
def qf1e_binary(prev):
recall = prev[0] / (prev[0] + prev[1])
precision = prev[0] / (prev[0] + prev[2])
return 1 - 2 * (precision * recall) / (precision + recall)
def compute_errors(true_prev, estim_prev, n_instances):
errors = {}
_eps = 1 / (2 * n_instances)
errors = {
"mae": qp.error.mae(true_prev, estim_prev),
"rae": qp.error.rae(true_prev, estim_prev, eps=_eps),
"mrae": qp.error.mrae(true_prev, estim_prev, eps=_eps),
"kld": qp.error.kld(true_prev, estim_prev, eps=_eps),
"nkld": qp.error.nkld(true_prev, estim_prev, eps=_eps),
"true_f1e": qf1e_binary(true_prev),
"estim_f1e": qf1e_binary(estim_prev),
}
return errors
def extend_and_quantify(
model,
q_model,
train,
test: LabelledCollection | AbstractStochasticSeededProtocol,
):
model.fit(*train.Xy)
pred_prob_train = cross_val_predict(model, *train.Xy, method="predict_proba")
_train = extend_collection(train, pred_prob_train)
q_model.fit(_train)
def quantify_extended(test):
pred_prob_test = model.predict_proba(test.X)
_test = extend_collection(test, pred_prob_test)
_estim_prev = q_model.quantify(_test.instances)
# check that _estim_prev has all the classes and eventually fill the missing
# ones with 0
for _cls in _test.classes_:
if _cls not in q_model.classes_:
_estim_prev = np.insert(_estim_prev, _cls, [0.0], axis=0)
print(_estim_prev)
return _test.prevalence(), _estim_prev
if isinstance(test, LabelledCollection):
_true_prev, _estim_prev = quantify_extended(test)
_errors = compute_errors(_true_prev, _estim_prev, test.X.shape[0])
return ([test.prevalence()], [_true_prev], [_estim_prev], [_errors])
elif isinstance(test, AbstractStochasticSeededProtocol):
orig_prevs, true_prevs, estim_prevs, errors = [], [], [], []
for index in test.samples_parameters():
sample = test.sample(index)
_true_prev, _estim_prev = quantify_extended(sample)
orig_prevs.append(sample.prevalence())
true_prevs.append(_true_prev)
estim_prevs.append(_estim_prev)
errors.append(compute_errors(_true_prev, _estim_prev, sample.X.shape[0]))
return orig_prevs, true_prevs, estim_prevs, errors
def test_1(dataset_name):
train, test = get_dataset(dataset_name)
orig_prevs, true_prevs, estim_prevs, errors = extend_and_quantify(
LogisticRegression(),
SLD(LogisticRegression()),
train,
APP(test, n_prevalences=11, repeats=1),
)
for orig_prev, true_prev, estim_prev, _errors in zip(
orig_prevs, true_prevs, estim_prevs, errors
):
print(f"original prevalence:\t{orig_prev}")
print(f"true prevalence:\t{true_prev}")
print(f"estimated prevalence:\t{estim_prev}")
for name, err in _errors.items():
print(f"{name}={err:.3f}")
print()