123 lines
4.1 KiB
Python
123 lines
4.1 KiB
Python
from abc import abstractmethod
|
|
import math
|
|
|
|
import numpy as np
|
|
from quapy.data import LabelledCollection
|
|
from quapy.method.aggregative import SLD
|
|
from sklearn.base import BaseEstimator
|
|
from sklearn.linear_model import LogisticRegression
|
|
from sklearn.model_selection import cross_val_predict
|
|
|
|
from quacc.data import ExtendedCollection
|
|
|
|
|
|
class AccuracyEstimator:
|
|
def extend(self, base: LabelledCollection, pred_proba=None) -> ExtendedCollection:
|
|
if not pred_proba:
|
|
pred_proba = self.c_model.predict_proba(base.X)
|
|
return ExtendedCollection.extend_collection(base, pred_proba)
|
|
|
|
@abstractmethod
|
|
def fit(self, train: LabelledCollection | ExtendedCollection):
|
|
...
|
|
|
|
@abstractmethod
|
|
def estimate(self, instances, ext=False):
|
|
...
|
|
|
|
|
|
class MulticlassAccuracyEstimator(AccuracyEstimator):
|
|
def __init__(self, c_model: BaseEstimator):
|
|
self.c_model = c_model
|
|
self.q_model = SLD(LogisticRegression())
|
|
self.e_train = None
|
|
|
|
def fit(self, train: LabelledCollection | ExtendedCollection):
|
|
# check if model is fit
|
|
# self.model.fit(*train.Xy)
|
|
if isinstance(train, LabelledCollection):
|
|
pred_prob_train = cross_val_predict(
|
|
self.c_model, *train.Xy, method="predict_proba"
|
|
)
|
|
|
|
self.e_train = ExtendedCollection.extend_collection(train, pred_prob_train)
|
|
else:
|
|
self.e_train = train
|
|
|
|
self.q_model.fit(self.e_train)
|
|
|
|
def estimate(self, instances, ext=False):
|
|
if not ext:
|
|
pred_prob = self.c_model.predict_proba(instances)
|
|
e_inst = ExtendedCollection.extend_instances(instances, pred_prob)
|
|
else:
|
|
e_inst = instances
|
|
|
|
estim_prev = self.q_model.quantify(e_inst)
|
|
|
|
return self._check_prevalence_classes(
|
|
self.e_train.classes_, self.q_model.classes_, estim_prev
|
|
)
|
|
|
|
def _check_prevalence_classes(self, true_classes, estim_classes, estim_prev):
|
|
for _cls in true_classes:
|
|
if _cls not in estim_classes:
|
|
estim_prev = np.insert(estim_prev, _cls, [0.0], axis=0)
|
|
return estim_prev
|
|
|
|
|
|
class BinaryQuantifierAccuracyEstimator(AccuracyEstimator):
|
|
def __init__(self, c_model: BaseEstimator):
|
|
self.c_model = c_model
|
|
self.q_model_0 = SLD(LogisticRegression())
|
|
self.q_model_1 = SLD(LogisticRegression())
|
|
self.e_train = None
|
|
|
|
def fit(self, train: LabelledCollection | ExtendedCollection):
|
|
# check if model is fit
|
|
# self.model.fit(*train.Xy)
|
|
if isinstance(train, LabelledCollection):
|
|
pred_prob_train = cross_val_predict(
|
|
self.c_model, *train.Xy, method="predict_proba"
|
|
)
|
|
|
|
self.e_train = ExtendedCollection.extend_collection(train, pred_prob_train)
|
|
elif isinstance(train, ExtendedCollection):
|
|
self.e_train = train
|
|
|
|
self.n_classes = self.e_train.n_classes
|
|
[e_train_0, e_train_1] = self.e_train.split_by_pred()
|
|
|
|
self.q_model_0.fit(e_train_0)
|
|
self.q_model_1.fit(e_train_1)
|
|
|
|
def estimate(self, instances, ext=False):
|
|
# TODO: test
|
|
if not ext:
|
|
pred_prob = self.c_model.predict_proba(instances)
|
|
e_inst = ExtendedCollection.extend_instances(instances, pred_prob)
|
|
else:
|
|
e_inst = instances
|
|
|
|
_ncl = int(math.sqrt(self.n_classes))
|
|
s_inst, norms = ExtendedCollection.split_inst_by_pred(_ncl, e_inst)
|
|
[estim_prev_0, estim_prev_1] = [
|
|
self._quantify_helper(inst, norm, q_model)
|
|
for (inst, norm, q_model) in zip(
|
|
s_inst, norms, [self.q_model_0, self.q_model_1]
|
|
)
|
|
]
|
|
|
|
estim_prev = []
|
|
for prev_row in zip(estim_prev_0, estim_prev_1):
|
|
for prev in prev_row:
|
|
estim_prev.append(prev)
|
|
|
|
return np.asarray(estim_prev)
|
|
|
|
def _quantify_helper(self, inst, norm, q_model):
|
|
if inst.shape[0] > 0:
|
|
return np.asarray(list(map(lambda p: p * norm, q_model.quantify(inst))))
|
|
else:
|
|
return np.asarray([0.0, 0.0])
|