from abc import abstractmethod from copy import deepcopy import numpy as np import quapy.functional as F import scipy from quapy.data.base import LabelledCollection from quapy.method.aggregative import AggregativeQuantifier from quapy.method.base import BaseQuantifier from scipy.sparse import csr_matrix, issparse from sklearn.base import BaseEstimator from sklearn.metrics import confusion_matrix from quacc.models.base import ClassifierAccuracyPrediction from quacc.models.utils import get_posteriors_from_h, max_conf, neg_entropy class CAPContingencyTable(ClassifierAccuracyPrediction): def __init__(self, h: BaseEstimator, acc: callable): self.h = h self.acc = acc def predict(self, X, oracle_prev=None): """ Evaluates the accuracy function on the predicted contingency table :param X: test data :param oracle_prev: np.ndarray with the class prevalence of the test set as estimated by an oracle. This is meant to test the effect of the errors in CAP that are explained by the errors in quantification performance :return: float """ cont_table = self.predict_ct(X, oracle_prev) raw_acc = self.acc(cont_table) norm_acc = np.clip(raw_acc, 0, 1) return norm_acc @abstractmethod def predict_ct(self, X, oracle_prev=None): """ Predicts the contingency table for the test data :param X: test data :param oracle_prev: np.ndarray with the class prevalence of the test set as estimated by an oracle. This is meant to test the effect of the errors in CAP that are explained by the errors in quantification performance :return: a contingency table """ ... class NaiveCAP(CAPContingencyTable): """ The Naive CAP is a method that relies on the IID assumption, and thus uses the estimation in the validation data as an estimate for the test data. """ def __init__(self, h: BaseEstimator, acc: callable): super().__init__(h, acc) def fit(self, val: LabelledCollection): y_hat = self.h.predict(val.X) y_true = val.y self.cont_table = confusion_matrix(y_true, y_pred=y_hat, labels=val.classes_) return self def predict_ct(self, test, oracle_prev=None): """ This method disregards the test set, under the assumption that it is IID wrt the training. This meaning that the confusion matrix for the test data should coincide with the one computed for training (using any cross validation strategy). :param test: test collection (ignored) :param oracle_prev: ignored :return: a confusion matrix in the return format of `sklearn.metrics.confusion_matrix` """ return self.cont_table class CAPContingencyTableQ(CAPContingencyTable): def __init__( self, h: BaseEstimator, acc: callable, q_class: AggregativeQuantifier, reuse_h=False, ): super().__init__(h, acc) self.reuse_h = reuse_h if reuse_h: assert isinstance( q_class, AggregativeQuantifier ), f"quantifier {q_class} is not of type aggregative" self.q = deepcopy(q_class) self.q.set_params(classifier=h) else: self.q = q_class def quantifier_fit(self, val: LabelledCollection): if self.reuse_h: self.q.fit(val, fit_classifier=False, val_split=val) else: self.q.fit(val) class ContTableTransferCAP(CAPContingencyTableQ): """ """ def __init__(self, h: BaseEstimator, acc: callable, q_class, reuse_h=False): super().__init__(h, acc, q_class, reuse_h) def fit(self, val: LabelledCollection): y_hat = self.h.predict(val.X) y_true = val.y self.cont_table = confusion_matrix( y_true=y_true, y_pred=y_hat, labels=val.classes_, normalize="all" ) self.train_prev = val.prevalence() self.quantifier_fit(val) return self def predict_ct(self, test, oracle_prev=None): """ :param test: test collection (ignored) :param oracle_prev: np.ndarray with the class prevalence of the test set as estimated by an oracle. This is meant to test the effect of the errors in CAP that are explained by the errors in quantification performance :return: a confusion matrix in the return format of `sklearn.metrics.confusion_matrix` """ if oracle_prev is None: prev_hat = self.q.quantify(test) else: prev_hat = oracle_prev adjustment = prev_hat / self.train_prev return self.cont_table * adjustment[:, np.newaxis] class NsquaredEquationsCAP(CAPContingencyTableQ): """ """ def __init__(self, h: BaseEstimator, acc: callable, q_class, reuse_h=False): super().__init__(h, acc, q_class, reuse_h) def fit(self, val: LabelledCollection): y_hat = self.h.predict(val.X) y_true = val.y self.cont_table = confusion_matrix(y_true, y_pred=y_hat, labels=val.classes_) self.quantifier_fit(val) self.A, self.partial_b = self._construct_equations() return self def _construct_equations(self): # we need a n x n matrix of unknowns n = self.cont_table.shape[1] # I is the matrix of indexes of unknowns. For example, if we need the counts of # all instances belonging to class i that have been classified as belonging to 0, 1, ..., n: # the indexes of the corresponding unknowns are given by I[i,:] I = np.arange(n * n).reshape(n, n) # system of equations: Ax=b, A.shape=(n*n, n*n,), b.shape=(n*n,) A = np.zeros(shape=(n * n, n * n)) b = np.zeros(shape=(n * n)) # first equation: the sum of all unknowns is 1 eq_no = 0 A[eq_no, :] = 1 b[eq_no] = 1 eq_no += 1 # (n-1)*(n-1) equations: the class cond rations should be the same in training and in test due to the # PPS assumptions. Example in three classes, a ratio: a/(a+b+c) [test] = ar [a ratio in training] # a / (a + b + c) = ar # a = (a + b + c) * ar # a = a ar + b ar + c ar # a - a ar - b ar - c ar = 0 # a (1-ar) + b (-ar) + c (-ar) = 0 class_cond_ratios_tr = self.cont_table / self.cont_table.sum( axis=1, keepdims=True ) for i in range(1, n): for j in range(1, n): ratio_ij = class_cond_ratios_tr[i, j] A[eq_no, I[i, :]] = -ratio_ij A[eq_no, I[i, j]] = 1 - ratio_ij b[eq_no] = 0 eq_no += 1 # n-1 equations: the sum of class-cond counts must equal the C&C prevalence prediction for i in range(1, n): A[eq_no, I[:, i]] = 1 # b[eq_no] = cc_prev_estim[i] eq_no += 1 # n-1 equations: the sum of true true class-conditional positives must equal the class prev label in test for i in range(1, n): A[eq_no, I[i, :]] = 1 # b[eq_no] = q_prev_estim[i] eq_no += 1 return A, b def predict_ct(self, test, oracle_prev): """ :param test: test collection (ignored) :param oracle_prev: np.ndarray with the class prevalence of the test set as estimated by an oracle. This is meant to test the effect of the errors in CAP that are explained by the errors in quantification performance :return: a confusion matrix in the return format of `sklearn.metrics.confusion_matrix` """ n = self.cont_table.shape[1] h_label_preds = self.h.predict(test) cc_prev_estim = F.prevalence_from_labels(h_label_preds, self.h.classes_) if oracle_prev is None: q_prev_estim = self.q.quantify(test) else: q_prev_estim = oracle_prev A = self.A b = self.partial_b # b is partially filled; we finish the vector by plugin in the classify and count # prevalence estimates (n-1 values only), and the quantification estimates (n-1 values only) b[-2 * (n - 1) : -(n - 1)] = cc_prev_estim[1:] b[-(n - 1) :] = q_prev_estim[1:] # try the fast solution (may not be valid) x = np.linalg.solve(A, b) if any(x < 0) or any(x > 0) or not np.isclose(x.sum(), 1): print("L", end="") # try the iterative solution def loss(x): return np.linalg.norm(A @ x - b, ord=2) x = F.optim_minimize(loss, n_classes=n**2) else: print(".", end="") cont_table_test = x.reshape(n, n) return cont_table_test class QuAcc: def _get_X_dot(self, X): h = self.h P = get_posteriors_from_h(h, X) add_covs = [] if self.add_posteriors: add_covs.append(P[:, 1:]) if self.add_maxconf: mc = max_conf(P, keepdims=True) add_covs.append(mc) if self.add_negentropy: ne = neg_entropy(P, keepdims=True) add_covs.append(ne) if self.add_maxinfsoft: lgP = np.log(P) mis = np.max(lgP - lgP.mean(axis=1, keepdims=True), axis=1, keepdims=True) add_covs.append(mis) if len(add_covs) > 0: X_dot = np.hstack(add_covs) if self.add_X: X_dot = safehstack(X, X_dot) return X_dot class QuAcc1xN2(CAPContingencyTableQ, QuAcc): def __init__( self, h: BaseEstimator, acc: callable, q_class: AggregativeQuantifier, add_X=True, add_posteriors=True, add_maxconf=False, add_negentropy=False, add_maxinfsoft=False, ): self.h = h self.acc = acc self.q = EmptySafeQuantifier(q_class) self.add_X = add_X self.add_posteriors = add_posteriors self.add_maxconf = add_maxconf self.add_negentropy = add_negentropy self.add_maxinfsoft = add_maxinfsoft def fit(self, val: LabelledCollection): pred_labels = self.h.predict(val.X) true_labels = val.y n = val.n_classes classes_dot = np.arange(n**2) ct_class_idx = classes_dot.reshape(n, n) X_dot = self._get_X_dot(val.X) y_dot = ct_class_idx[true_labels, pred_labels] val_dot = LabelledCollection(X_dot, y_dot, classes=classes_dot) self.q.fit(val_dot) def predict_ct(self, X, oracle_prev=None): X_dot = self._get_X_dot(X) return self.q.quantify(X_dot) class QuAcc1xNp1(CAPContingencyTableQ, QuAcc): def __init__( self, h: BaseEstimator, acc: callable, q_class: AggregativeQuantifier, add_X=True, add_posteriors=True, add_maxconf=False, add_negentropy=False, add_maxinfsoft=False, ): self.h = h self.acc = acc self.q = EmptySafeQuantifier(q_class) self.add_X = add_X self.add_posteriors = add_posteriors self.add_maxconf = add_maxconf self.add_negentropy = add_negentropy self.add_maxinfsoft = add_maxinfsoft def fit(self, val: LabelledCollection): pred_labels = self.h.predict(val.X) true_labels = val.y n = val.n_classes classes_dot = np.arange(n + 1) # ct_class_idx = classes_dot.reshape(n, n) ct_class_idx = np.full((n, n), n) ct_class_idx[np.diag_indices(n)] = np.arange(n) X_dot = self._get_X_dot(val.X) y_dot = ct_class_idx[true_labels, pred_labels] val_dot = LabelledCollection(X_dot, y_dot, classes=classes_dot) self.q.fit(val_dot) def _get_ct_hat(self, n, ct_compressed): _diag_idx = np.diag_indices(n) ct_rev_idx = (np.append(_diag_idx[0], 0), np.append(_diag_idx[1], 1)) ct_hat = np.zeros((n, n)) ct_hat[ct_rev_idx] = ct_compressed return ct_hat def predict_ct(self, X: LabelledCollection, oracle_prev=None): X_dot = self._get_X_dot(X) ct_compressed = self.q.quantify(X_dot) return self._get_ct_hat(X.n_classes, ct_compressed) class QuAccNxN(CAPContingencyTableQ, QuAcc): def __init__( self, h: BaseEstimator, acc: callable, q_class: AggregativeQuantifier, add_X=True, add_posteriors=True, add_maxconf=False, add_negentropy=False, add_maxinfsoft=False, ): self.h = h self.acc = acc self.q_class = q_class self.add_X = add_X self.add_posteriors = add_posteriors self.add_maxconf = add_maxconf self.add_negentropy = add_negentropy self.add_maxinfsoft = add_maxinfsoft def fit(self, val: LabelledCollection): pred_labels = self.h.predict(val.X) true_labels = val.y X_dot = self._get_X_dot(val.X) self.q = [] for class_i in self.h.classes_: X_dot_i = X_dot[pred_labels == class_i] y_i = true_labels[pred_labels == class_i] data_i = LabelledCollection(X_dot_i, y_i, classes=val.classes_) q_i = EmptySafeQuantifier(deepcopy(self.q_class)) q_i.fit(data_i) self.q.append(q_i) def predict_ct(self, X, oracle_prev=None): classes = self.h.classes_ pred_labels = self.h.predict(X) X_dot = self._get_X_dot(X) pred_prev = F.prevalence_from_labels(pred_labels, classes) cont_table = [] for class_i, q_i, p_i in zip(classes, self.q, pred_prev): X_dot_i = X_dot[pred_labels == class_i] classcond_cond_table_prevs = q_i.quantify(X_dot_i) cond_table_prevs = p_i * classcond_cond_table_prevs cont_table.append(cond_table_prevs) cont_table = np.vstack(cont_table) return cont_table def safehstack(X, P): if issparse(X) or issparse(P): XP = scipy.sparse.hstack([X, P]) XP = csr_matrix(XP) else: XP = np.hstack([X, P]) return XP class EmptySafeQuantifier(BaseQuantifier): def __init__(self, surrogate_quantifier: BaseQuantifier): self.surrogate = surrogate_quantifier def fit(self, data: LabelledCollection): self.n_classes = data.n_classes class_compact_data, self.old_class_idx = data.compact_classes() if self.num_non_empty_classes() > 1: self.surrogate.fit(class_compact_data) return self def quantify(self, instances): num_instances = instances.shape[0] if self.num_non_empty_classes() == 0 or num_instances == 0: # returns the uniform prevalence vector uniform = np.full( fill_value=1.0 / self.n_classes, shape=self.n_classes, dtype=float ) return uniform elif self.num_non_empty_classes() == 1: # returns a prevalence vector with 100% of the mass in the only non empty class prev_vector = np.full(fill_value=0.0, shape=self.n_classes, dtype=float) prev_vector[self.old_class_idx[0]] = 1 return prev_vector else: class_compact_prev = self.surrogate.quantify(instances) prev_vector = np.full(fill_value=0.0, shape=self.n_classes, dtype=float) prev_vector[self.old_class_idx] = class_compact_prev return prev_vector def num_non_empty_classes(self): return len(self.old_class_idx)