import math import os import pickle import tarfile from typing import List import numpy as np import quapy as qp from quapy.data.base import LabelledCollection from sklearn.conftest import fetch_rcv1 from sklearn.utils import Bunch from quacc import utils TRAIN_VAL_PROP = 0.5 def fetch_cifar10() -> Bunch: URL = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" data_home = utils.get_quacc_home() unzipped_path = data_home / "cifar-10-batches-py" if not unzipped_path.exists(): downloaded_path = data_home / URL.split("/")[-1] utils.download_file(URL, downloaded_path) with tarfile.open(downloaded_path) as f: f.extractall(data_home) os.remove(downloaded_path) datas = [] data_names = sorted([f for f in os.listdir(unzipped_path) if f.startswith("data")]) for f in data_names: with open(unzipped_path / f, "rb") as file: datas.append(pickle.load(file, encoding="bytes")) tests = [] test_names = sorted([f for f in os.listdir(unzipped_path) if f.startswith("test")]) for f in test_names: with open(unzipped_path / f, "rb") as file: tests.append(pickle.load(file, encoding="bytes")) with open(unzipped_path / "batches.meta", "rb") as file: meta = pickle.load(file, encoding="bytes") return Bunch( train=Bunch( data=np.concatenate([d[b"data"] for d in datas], axis=0), labels=np.concatenate([d[b"labels"] for d in datas]), ), test=Bunch( data=np.concatenate([d[b"data"] for d in tests], axis=0), labels=np.concatenate([d[b"labels"] for d in tests]), ), label_names=[cs.decode("utf-8") for cs in meta[b"label_names"]], ) def fetch_cifar100(): URL = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz" data_home = utils.get_quacc_home() unzipped_path = data_home / "cifar-100-python" if not unzipped_path.exists(): downloaded_path = data_home / URL.split("/")[-1] utils.download_file(URL, downloaded_path) with tarfile.open(downloaded_path) as f: f.extractall(data_home) os.remove(downloaded_path) with open(unzipped_path / "train", "rb") as file: train_d = pickle.load(file, encoding="bytes") with open(unzipped_path / "test", "rb") as file: test_d = pickle.load(file, encoding="bytes") with open(unzipped_path / "meta", "rb") as file: meta_d = pickle.load(file, encoding="bytes") train_bunch = Bunch( data=train_d[b"data"], fine_labels=np.array(train_d[b"fine_labels"]), coarse_labels=np.array(train_d[b"coarse_labels"]), ) test_bunch = Bunch( data=test_d[b"data"], fine_labels=np.array(test_d[b"fine_labels"]), coarse_labels=np.array(test_d[b"coarse_labels"]), ) return Bunch( train=train_bunch, test=test_bunch, fine_label_names=meta_d[b"fine_label_names"], coarse_label_names=meta_d[b"coarse_label_names"], ) class DatasetSample: def __init__( self, train: LabelledCollection, validation: LabelledCollection, test: LabelledCollection, ): self.train = train self.validation = validation self.test = test @property def train_prev(self): return self.train.prevalence() @property def validation_prev(self): return self.validation.prevalence() @property def prevs(self): return {"train": self.train_prev, "validation": self.validation_prev} class Dataset: def __init__(self, name, n_prevalences=9, prevs=None, target=None): self._name = name self._target = target self.prevs = None self.n_prevs = n_prevalences if prevs is not None: prevs = np.unique([p for p in prevs if p > 0.0 and p < 1.0]) if prevs.shape[0] > 0: self.prevs = np.sort(prevs) self.n_prevs = self.prevs.shape[0] def __spambase(self): return qp.datasets.fetch_UCIDataset("spambase", verbose=False).train_test # provare min_df=5 def __imdb(self): return qp.datasets.fetch_reviews("imdb", tfidf=True, min_df=3).train_test def __rcv1(self): n_train = 23149 available_targets = ["CCAT", "GCAT", "MCAT"] if self._target is None or self._target not in available_targets: raise ValueError(f"Invalid target {self._target}") dataset = fetch_rcv1() target_index = np.where(dataset.target_names == self._target)[0] all_train_d = dataset.data[:n_train, :] test_d = dataset.data[n_train:, :] labels = dataset.target[:, target_index].toarray().flatten() all_train_l, test_l = labels[:n_train], labels[n_train:] all_train = LabelledCollection(all_train_d, all_train_l, classes=[0, 1]) test = LabelledCollection(test_d, test_l, classes=[0, 1]) return all_train, test def __cifar10(self): dataset = fetch_cifar10() available_targets: list = dataset.label_names if self._target is None or self._target not in available_targets: raise ValueError(f"Invalid target {self._target}") target_index = available_targets.index(self._target) all_train_d = dataset.train.data all_train_l = (dataset.train.labels == target_index).astype(int) test_d = dataset.test.data test_l = (dataset.test.labels == target_index).astype(int) all_train = LabelledCollection(all_train_d, all_train_l, classes=[0, 1]) test = LabelledCollection(test_d, test_l, classes=[0, 1]) return all_train, test def __cifar100(self): dataset = fetch_cifar100() available_targets: list = dataset.coarse_label_names if self._target is None or self._target not in available_targets: raise ValueError(f"Invalid target {self._target}") target_index = available_targets.index(self._target) all_train_d = dataset.train.data all_train_l = (dataset.train.coarse_labels == target_index).astype(int) test_d = dataset.test.data test_l = (dataset.test.coarse_labels == target_index).astype(int) all_train = LabelledCollection(all_train_d, all_train_l, classes=[0, 1]) test = LabelledCollection(test_d, test_l, classes=[0, 1]) return all_train, test def __train_test(self): all_train, test = { "spambase": self.__spambase, "imdb": self.__imdb, "rcv1": self.__rcv1, "cifar10": self.__cifar10, "cifar100": self.__cifar100, }[self._name]() return all_train, test def get_raw(self) -> DatasetSample: all_train, test = self.__train_test() train, val = all_train.split_stratified( train_prop=TRAIN_VAL_PROP, random_state=0 ) return DatasetSample(train, val, test) def get(self) -> List[DatasetSample]: all_train, test = self.__train_test() # resample all_train set to have (0.5, 0.5) prevalence at_positives = np.sum(all_train.y) all_train = all_train.sampling( min(at_positives, len(all_train) - at_positives) * 2, 0.5, random_state=0 ) # sample prevalences if self.prevs is not None: prevs = self.prevs else: prevs = np.linspace(0.0, 1.0, num=self.n_prevs + 1, endpoint=False)[1:] at_size = min(math.floor(len(all_train) * 0.5 / p) for p in prevs) datasets = [] for p in 1.0 - prevs: all_train_sampled = all_train.sampling(at_size, p, random_state=0) train, validation = all_train_sampled.split_stratified( train_prop=TRAIN_VAL_PROP, random_state=0 ) datasets.append(DatasetSample(train, validation, test)) return datasets def __call__(self): return self.get() @property def name(self): match (self._name, self.n_prevs): case (("rcv1" | "cifar10" | "cifar100"), 9): return f"{self._name}_{self._target}" case (("rcv1" | "cifar10" | "cifar100"), _): return f"{self._name}_{self._target}_{self.n_prevs}prevs" case (_, 9): return f"{self._name}" case (_, _): return f"{self._name}_{self.n_prevs}prevs" # >>> fetch_rcv1().target_names # array(['C11', 'C12', 'C13', 'C14', 'C15', 'C151', 'C1511', 'C152', 'C16', # 'C17', 'C171', 'C172', 'C173', 'C174', 'C18', 'C181', 'C182', # 'C183', 'C21', 'C22', 'C23', 'C24', 'C31', 'C311', 'C312', 'C313', # 'C32', 'C33', 'C331', 'C34', 'C41', 'C411', 'C42', 'CCAT', 'E11', # 'E12', 'E121', 'E13', 'E131', 'E132', 'E14', 'E141', 'E142', # 'E143', 'E21', 'E211', 'E212', 'E31', 'E311', 'E312', 'E313', # 'E41', 'E411', 'E51', 'E511', 'E512', 'E513', 'E61', 'E71', 'ECAT', # 'G15', 'G151', 'G152', 'G153', 'G154', 'G155', 'G156', 'G157', # 'G158', 'G159', 'GCAT', 'GCRIM', 'GDEF', 'GDIP', 'GDIS', 'GENT', # 'GENV', 'GFAS', 'GHEA', 'GJOB', 'GMIL', 'GOBIT', 'GODD', 'GPOL', # 'GPRO', 'GREL', 'GSCI', 'GSPO', 'GTOUR', 'GVIO', 'GVOTE', 'GWEA', # 'GWELF', 'M11', 'M12', 'M13', 'M131', 'M132', 'M14', 'M141', # 'M142', 'M143', 'MCAT'], dtype=object) def rcv1_info(): dataset = fetch_rcv1() n_train = 23149 targets = [] for target in range(103): train_t_prev = np.average(dataset.target[:n_train, target].toarray().flatten()) test_t_prev = np.average(dataset.target[n_train:, target].toarray().flatten()) targets.append( ( dataset.target_names[target], { "train": (1.0 - train_t_prev, train_t_prev), "test": (1.0 - test_t_prev, test_t_prev), }, ) ) targets.sort(key=lambda t: t[1]["train"][1]) for n, d in targets: print(f"{n}:") for k, (fp, tp) in d.items(): print(f"\t{k}: {fp:.4f}, {tp:.4f}") if __name__ == "__main__": fetch_cifar100()