from quacc.evaluation.report import DatasetReport dr = DatasetReport.unpickle("output/main/imdb/imdb.pickle") _estimators = ["sld_lr_gs", "bin_sld_lr_gs", "mul_sld_lr_gs", "m3w_sld_lr_gs"] _data = dr.data(metric="acc", estimators=_estimators) for idx, cr in zip(_data.index.unique(0), dr.crs[::-1]): print(cr.train_prev) print({k: v for k, v in cr.fit_scores.items() if k in _estimators}) print(_data.loc[(idx, slice(None), slice(None)), :])