import pandas as pd import quapy as qp from quapy.method.aggregative import SLD from quapy.protocol import APP from sklearn.linear_model import LogisticRegression import quacc.evaluation as eval from quacc.estimator import AccuracyEstimator from .data import get_dataset qp.environ["SAMPLE_SIZE"] = 100 pd.set_option("display.float_format", "{:.4f}".format) def test_2(dataset_name): train, test = get_dataset(dataset_name) model = LogisticRegression() model.fit(*train.Xy) estimator = AccuracyEstimator(model, SLD(LogisticRegression())) estimator.fit(train) df = eval.evaluation_report(estimator, APP(test, n_prevalences=11, repeats=100)) # print(df.to_string()) print(df.to_string()) def main(): for dataset_name in [ # "hp", # "imdb", "spambase", ]: print(dataset_name) test_2(dataset_name) print("*" * 50) if __name__ == "__main__": main()