rcv1_CCAT > train: [0.09996662 0.90003338] > validation: [0.09996662 0.90003338] > evaluate_bin_sld: 198.301s > evaluate_mul_sld: 53.156s > kfcv: 41.095s > atc_mc: 42.167s > atc_ne: 41.909s > doc_feat: 35.796s > tot: 202.108s <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>bin</th> <th>mul</th> <th>kfcv</th> <th>atc_mc</th> <th>atc_ne</th> <th>doc_feat</th> </tr> </thead> <tbody> <tr> <th>(0.0, 1.0)</th> <td>0.0048</td> <td>0.0040</td> <td>0.0866</td> <td>0.0243</td> <td>0.0243</td> <td>0.0830</td> </tr> <tr> <th>(0.05, 0.95)</th> <td>0.0060</td> <td>0.0072</td> <td>0.0441</td> <td>0.0134</td> <td>0.0134</td> <td>0.0407</td> </tr> <tr> <th>(0.1, 0.9)</th> <td>0.0084</td> <td>0.0103</td> <td>0.0032</td> <td>0.0070</td> <td>0.0070</td> <td>0.0036</td> </tr> <tr> <th>(0.15, 0.85)</th> <td>0.0127</td> <td>0.0172</td> <td>0.0418</td> <td>0.0090</td> <td>0.0090</td> <td>0.0450</td> </tr> <tr> <th>(0.2, 0.8)</th> <td>0.0184</td> <td>0.0246</td> <td>0.0841</td> <td>0.0168</td> <td>0.0168</td> <td>0.0872</td> </tr> <tr> <th>(0.25, 0.75)</th> <td>0.0231</td> <td>0.0318</td> <td>0.1246</td> <td>0.0239</td> <td>0.0239</td> <td>0.1276</td> </tr> <tr> <th>(0.3, 0.7)</th> <td>0.0313</td> <td>0.0426</td> <td>0.1678</td> <td>0.0334</td> <td>0.0334</td> <td>0.1706</td> </tr> <tr> <th>(0.35, 0.65)</th> <td>0.0392</td> <td>0.0536</td> <td>0.2110</td> <td>0.0422</td> <td>0.0422</td> <td>0.2137</td> </tr> <tr> <th>(0.4, 0.6)</th> <td>0.0418</td> <td>0.0563</td> <td>0.2528</td> <td>0.0541</td> <td>0.0541</td> <td>0.2555</td> </tr> <tr> <th>(0.45, 0.55)</th> <td>0.0527</td> <td>0.0715</td> <td>0.2966</td> <td>0.0622</td> <td>0.0622</td> <td>0.2991</td> </tr> <tr> <th>(0.5, 0.5)</th> <td>0.0569</td> <td>0.0771</td> <td>0.3383</td> <td>0.0749</td> <td>0.0749</td> <td>0.3407</td> </tr> <tr> <th>(0.55, 0.45)</th> <td>0.0637</td> <td>0.0867</td> <td>0.3817</td> <td>0.0847</td> <td>0.0847</td> <td>0.3840</td> </tr> <tr> <th>(0.6, 0.4)</th> <td>0.0727</td> <td>0.0999</td> <td>0.4250</td> <td>0.0943</td> <td>0.0943</td> <td>0.4272</td> </tr> <tr> <th>(0.65, 0.35)</th> <td>0.0778</td> <td>0.1062</td> <td>0.4662</td> <td>0.1040</td> <td>0.1040</td> <td>0.4683</td> </tr> <tr> <th>(0.7, 0.3)</th> <td>0.0825</td> <td>0.1118</td> <td>0.5099</td> <td>0.1131</td> <td>0.1131</td> <td>0.5119</td> </tr> <tr> <th>(0.75, 0.25)</th> <td>0.0879</td> <td>0.1197</td> <td>0.5519</td> <td>0.1217</td> <td>0.1217</td> <td>0.5537</td> </tr> <tr> <th>(0.8, 0.2)</th> <td>0.0887</td> <td>0.1192</td> <td>0.5945</td> <td>0.1334</td> <td>0.1334</td> <td>0.5963</td> </tr> <tr> <th>(0.85, 0.15)</th> <td>0.0926</td> <td>0.1269</td> <td>0.6368</td> <td>0.1426</td> <td>0.1426</td> <td>0.6384</td> </tr> <tr> <th>(0.9, 0.1)</th> <td>0.0887</td> <td>0.1250</td> <td>0.6791</td> <td>0.1528</td> <td>0.1528</td> <td>0.6806</td> </tr> <tr> <th>(0.95, 0.05)</th> <td>0.0501</td> <td>0.0961</td> <td>0.7227</td> <td>0.1614</td> <td>0.1614</td> <td>0.7241</td> </tr> <tr> <th>(1.0, 0.0)</th> <td>0.0004</td> <td>0.0358</td> <td>0.7631</td> <td>0.1704</td> <td>0.1704</td> <td>0.7643</td> </tr> </tbody> </table> > train: [0.19993324 0.80006676] > validation: [0.20010013 0.79989987] > evaluate_bin_sld: 199.250s > evaluate_mul_sld: 55.414s > kfcv: 41.131s > atc_mc: 42.125s > atc_ne: 41.892s > doc_feat: 35.279s > tot: 202.707s <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>bin</th> <th>mul</th> <th>kfcv</th> <th>atc_mc</th> <th>atc_ne</th> <th>doc_feat</th> </tr> </thead> <tbody> <tr> <th>(0.0, 1.0)</th> <td>0.0055</td> <td>0.0058</td> <td>0.0915</td> <td>0.0147</td> <td>0.0147</td> <td>0.0775</td> </tr> <tr> <th>(0.05, 0.95)</th> <td>0.0157</td> <td>0.0084</td> <td>0.0719</td> <td>0.0130</td> <td>0.0130</td> <td>0.0581</td> </tr> <tr> <th>(0.1, 0.9)</th> <td>0.0154</td> <td>0.0099</td> <td>0.0503</td> <td>0.0108</td> <td>0.0108</td> <td>0.0365</td> </tr> <tr> <th>(0.15, 0.85)</th> <td>0.0141</td> <td>0.0111</td> <td>0.0292</td> <td>0.0104</td> <td>0.0104</td> <td>0.0158</td> </tr> <tr> <th>(0.2, 0.8)</th> <td>0.0120</td> <td>0.0116</td> <td>0.0103</td> <td>0.0100</td> <td>0.0100</td> <td>0.0068</td> </tr> <tr> <th>(0.25, 0.75)</th> <td>0.0098</td> <td>0.0124</td> <td>0.0115</td> <td>0.0091</td> <td>0.0091</td> <td>0.0243</td> </tr> <tr> <th>(0.3, 0.7)</th> <td>0.0079</td> <td>0.0131</td> <td>0.0312</td> <td>0.0106</td> <td>0.0106</td> <td>0.0445</td> </tr> <tr> <th>(0.35, 0.65)</th> <td>0.0087</td> <td>0.0154</td> <td>0.0529</td> <td>0.0097</td> <td>0.0097</td> <td>0.0660</td> </tr> <tr> <th>(0.4, 0.6)</th> <td>0.0074</td> <td>0.0143</td> <td>0.0729</td> <td>0.0110</td> <td>0.0110</td> <td>0.0859</td> </tr> <tr> <th>(0.45, 0.55)</th> <td>0.0082</td> <td>0.0148</td> <td>0.0933</td> <td>0.0111</td> <td>0.0111</td> <td>0.1062</td> </tr> <tr> <th>(0.5, 0.5)</th> <td>0.0081</td> <td>0.0152</td> <td>0.1152</td> <td>0.0136</td> <td>0.0136</td> <td>0.1280</td> </tr> <tr> <th>(0.55, 0.45)</th> <td>0.0104</td> <td>0.0164</td> <td>0.1384</td> <td>0.0147</td> <td>0.0147</td> <td>0.1511</td> </tr> <tr> <th>(0.6, 0.4)</th> <td>0.0108</td> <td>0.0193</td> <td>0.1567</td> <td>0.0168</td> <td>0.0168</td> <td>0.1692</td> </tr> <tr> <th>(0.65, 0.35)</th> <td>0.0129</td> <td>0.0212</td> <td>0.1806</td> <td>0.0196</td> <td>0.0196</td> <td>0.1930</td> </tr> <tr> <th>(0.7, 0.3)</th> <td>0.0134</td> <td>0.0242</td> <td>0.2005</td> <td>0.0178</td> <td>0.0178</td> <td>0.2128</td> </tr> <tr> <th>(0.75, 0.25)</th> <td>0.0162</td> <td>0.0238</td> <td>0.2196</td> <td>0.0201</td> <td>0.0201</td> <td>0.2318</td> </tr> <tr> <th>(0.8, 0.2)</th> <td>0.0161</td> <td>0.0248</td> <td>0.2425</td> <td>0.0214</td> <td>0.0214</td> <td>0.2546</td> </tr> <tr> <th>(0.85, 0.15)</th> <td>0.0207</td> <td>0.0320</td> <td>0.2620</td> <td>0.0227</td> <td>0.0227</td> <td>0.2740</td> </tr> <tr> <th>(0.9, 0.1)</th> <td>0.0233</td> <td>0.0340</td> <td>0.2841</td> <td>0.0267</td> <td>0.0267</td> <td>0.2960</td> </tr> <tr> <th>(0.95, 0.05)</th> <td>0.0261</td> <td>0.0393</td> <td>0.3034</td> <td>0.0274</td> <td>0.0274</td> <td>0.3151</td> </tr> <tr> <th>(1.0, 0.0)</th> <td>0.0019</td> <td>0.0162</td> <td>0.3217</td> <td>0.0311</td> <td>0.0311</td> <td>0.3333</td> </tr> </tbody> </table> > train: [0.29989987 0.70010013] > validation: [0.30006676 0.69993324] > evaluate_bin_sld: 197.848s > evaluate_mul_sld: 55.610s > kfcv: 40.783s > atc_mc: 42.124s > atc_ne: 41.370s > doc_feat: 35.340s > tot: 199.287s <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>bin</th> <th>mul</th> <th>kfcv</th> <th>atc_mc</th> <th>atc_ne</th> <th>doc_feat</th> </tr> </thead> <tbody> <tr> <th>(0.0, 1.0)</th> <td>0.0051</td> <td>0.0059</td> <td>0.0530</td> <td>0.0059</td> <td>0.0059</td> <td>0.0422</td> </tr> <tr> <th>(0.05, 0.95)</th> <td>0.0108</td> <td>0.0082</td> <td>0.0455</td> <td>0.0063</td> <td>0.0063</td> <td>0.0347</td> </tr> <tr> <th>(0.1, 0.9)</th> <td>0.0127</td> <td>0.0110</td> <td>0.0356</td> <td>0.0062</td> <td>0.0062</td> <td>0.0250</td> </tr> <tr> <th>(0.15, 0.85)</th> <td>0.0147</td> <td>0.0145</td> <td>0.0265</td> <td>0.0076</td> <td>0.0076</td> <td>0.0160</td> </tr> <tr> <th>(0.2, 0.8)</th> <td>0.0158</td> <td>0.0162</td> <td>0.0173</td> <td>0.0071</td> <td>0.0071</td> <td>0.0086</td> </tr> <tr> <th>(0.25, 0.75)</th> <td>0.0147</td> <td>0.0158</td> <td>0.0091</td> <td>0.0070</td> <td>0.0070</td> <td>0.0075</td> </tr> <tr> <th>(0.3, 0.7)</th> <td>0.0134</td> <td>0.0162</td> <td>0.0073</td> <td>0.0080</td> <td>0.0080</td> <td>0.0127</td> </tr> <tr> <th>(0.35, 0.65)</th> <td>0.0138</td> <td>0.0178</td> <td>0.0132</td> <td>0.0100</td> <td>0.0100</td> <td>0.0230</td> </tr> <tr> <th>(0.4, 0.6)</th> <td>0.0130</td> <td>0.0180</td> <td>0.0204</td> <td>0.0096</td> <td>0.0096</td> <td>0.0306</td> </tr> <tr> <th>(0.45, 0.55)</th> <td>0.0102</td> <td>0.0149</td> <td>0.0297</td> <td>0.0102</td> <td>0.0102</td> <td>0.0397</td> </tr> <tr> <th>(0.5, 0.5)</th> <td>0.0094</td> <td>0.0160</td> <td>0.0405</td> <td>0.0111</td> <td>0.0111</td> <td>0.0504</td> </tr> <tr> <th>(0.55, 0.45)</th> <td>0.0095</td> <td>0.0135</td> <td>0.0516</td> <td>0.0123</td> <td>0.0123</td> <td>0.0615</td> </tr> <tr> <th>(0.6, 0.4)</th> <td>0.0086</td> <td>0.0132</td> <td>0.0596</td> <td>0.0122</td> <td>0.0122</td> <td>0.0693</td> </tr> <tr> <th>(0.65, 0.35)</th> <td>0.0102</td> <td>0.0123</td> <td>0.0717</td> <td>0.0149</td> <td>0.0149</td> <td>0.0814</td> </tr> <tr> <th>(0.7, 0.3)</th> <td>0.0098</td> <td>0.0115</td> <td>0.0797</td> <td>0.0160</td> <td>0.0160</td> <td>0.0894</td> </tr> <tr> <th>(0.75, 0.25)</th> <td>0.0111</td> <td>0.0108</td> <td>0.0880</td> <td>0.0160</td> <td>0.0160</td> <td>0.0975</td> </tr> <tr> <th>(0.8, 0.2)</th> <td>0.0112</td> <td>0.0093</td> <td>0.0996</td> <td>0.0206</td> <td>0.0206</td> <td>0.1091</td> </tr> <tr> <th>(0.85, 0.15)</th> <td>0.0149</td> <td>0.0119</td> <td>0.1094</td> <td>0.0197</td> <td>0.0197</td> <td>0.1187</td> </tr> <tr> <th>(0.9, 0.1)</th> <td>0.0167</td> <td>0.0137</td> <td>0.1178</td> <td>0.0216</td> <td>0.0216</td> <td>0.1271</td> </tr> <tr> <th>(0.95, 0.05)</th> <td>0.0184</td> <td>0.0145</td> <td>0.1275</td> <td>0.0222</td> <td>0.0222</td> <td>0.1367</td> </tr> <tr> <th>(1.0, 0.0)</th> <td>0.0007</td> <td>0.0099</td> <td>0.1371</td> <td>0.0238</td> <td>0.0238</td> <td>0.1462</td> </tr> </tbody> </table> > train: [0.40003338 0.59996662] > validation: [0.40003338 0.59996662] > evaluate_bin_sld: 197.597s > evaluate_mul_sld: 55.556s > kfcv: 40.650s > atc_mc: 41.687s > atc_ne: 41.375s > doc_feat: 34.998s > tot: 198.892s <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>bin</th> <th>mul</th> <th>kfcv</th> <th>atc_mc</th> <th>atc_ne</th> <th>doc_feat</th> </tr> </thead> <tbody> <tr> <th>(0.0, 1.0)</th> <td>0.0013</td> <td>0.0048</td> <td>0.0194</td> <td>0.0071</td> <td>0.0071</td> <td>0.0126</td> </tr> <tr> <th>(0.05, 0.95)</th> <td>0.0076</td> <td>0.0084</td> <td>0.0184</td> <td>0.0071</td> <td>0.0071</td> <td>0.0111</td> </tr> <tr> <th>(0.1, 0.9)</th> <td>0.0092</td> <td>0.0107</td> <td>0.0161</td> <td>0.0078</td> <td>0.0078</td> <td>0.0093</td> </tr> <tr> <th>(0.15, 0.85)</th> <td>0.0127</td> <td>0.0149</td> <td>0.0134</td> <td>0.0070</td> <td>0.0070</td> <td>0.0077</td> </tr> <tr> <th>(0.2, 0.8)</th> <td>0.0183</td> <td>0.0200</td> <td>0.0110</td> <td>0.0066</td> <td>0.0066</td> <td>0.0075</td> </tr> <tr> <th>(0.25, 0.75)</th> <td>0.0208</td> <td>0.0230</td> <td>0.0090</td> <td>0.0075</td> <td>0.0075</td> <td>0.0069</td> </tr> <tr> <th>(0.3, 0.7)</th> <td>0.0235</td> <td>0.0260</td> <td>0.0080</td> <td>0.0076</td> <td>0.0076</td> <td>0.0073</td> </tr> <tr> <th>(0.35, 0.65)</th> <td>0.0273</td> <td>0.0306</td> <td>0.0065</td> <td>0.0079</td> <td>0.0079</td> <td>0.0095</td> </tr> <tr> <th>(0.4, 0.6)</th> <td>0.0296</td> <td>0.0335</td> <td>0.0074</td> <td>0.0072</td> <td>0.0072</td> <td>0.0099</td> </tr> <tr> <th>(0.45, 0.55)</th> <td>0.0283</td> <td>0.0313</td> <td>0.0080</td> <td>0.0085</td> <td>0.0085</td> <td>0.0116</td> </tr> <tr> <th>(0.5, 0.5)</th> <td>0.0267</td> <td>0.0317</td> <td>0.0087</td> <td>0.0085</td> <td>0.0085</td> <td>0.0147</td> </tr> <tr> <th>(0.55, 0.45)</th> <td>0.0273</td> <td>0.0331</td> <td>0.0131</td> <td>0.0086</td> <td>0.0086</td> <td>0.0196</td> </tr> <tr> <th>(0.6, 0.4)</th> <td>0.0239</td> <td>0.0320</td> <td>0.0136</td> <td>0.0082</td> <td>0.0082</td> <td>0.0202</td> </tr> <tr> <th>(0.65, 0.35)</th> <td>0.0208</td> <td>0.0290</td> <td>0.0171</td> <td>0.0084</td> <td>0.0084</td> <td>0.0241</td> </tr> <tr> <th>(0.7, 0.3)</th> <td>0.0186</td> <td>0.0288</td> <td>0.0213</td> <td>0.0084</td> <td>0.0084</td> <td>0.0281</td> </tr> <tr> <th>(0.75, 0.25)</th> <td>0.0158</td> <td>0.0261</td> <td>0.0219</td> <td>0.0090</td> <td>0.0090</td> <td>0.0288</td> </tr> <tr> <th>(0.8, 0.2)</th> <td>0.0130</td> <td>0.0235</td> <td>0.0269</td> <td>0.0089</td> <td>0.0089</td> <td>0.0338</td> </tr> <tr> <th>(0.85, 0.15)</th> <td>0.0084</td> <td>0.0180</td> <td>0.0284</td> <td>0.0083</td> <td>0.0083</td> <td>0.0352</td> </tr> <tr> <th>(0.9, 0.1)</th> <td>0.0057</td> <td>0.0134</td> <td>0.0322</td> <td>0.0092</td> <td>0.0092</td> <td>0.0390</td> </tr> <tr> <th>(0.95, 0.05)</th> <td>0.0050</td> <td>0.0091</td> <td>0.0339</td> <td>0.0101</td> <td>0.0101</td> <td>0.0406</td> </tr> <tr> <th>(1.0, 0.0)</th> <td>0.0007</td> <td>0.0064</td> <td>0.0379</td> <td>0.0106</td> <td>0.0106</td> <td>0.0447</td> </tr> </tbody> </table> > train: [0.5 0.5] > validation: [0.5 0.5] > evaluate_bin_sld: 197.283s > evaluate_mul_sld: 54.736s > kfcv: 40.375s > atc_mc: 41.898s > atc_ne: 41.366s > doc_feat: 35.145s > tot: 198.630s <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>bin</th> <th>mul</th> <th>kfcv</th> <th>atc_mc</th> <th>atc_ne</th> <th>doc_feat</th> </tr> </thead> <tbody> <tr> <th>(0.0, 1.0)</th> <td>0.0004</td> <td>0.0035</td> <td>0.0257</td> <td>0.0289</td> <td>0.0289</td> <td>0.0344</td> </tr> <tr> <th>(0.05, 0.95)</th> <td>0.0075</td> <td>0.0085</td> <td>0.0224</td> <td>0.0253</td> <td>0.0253</td> <td>0.0310</td> </tr> <tr> <th>(0.1, 0.9)</th> <td>0.0081</td> <td>0.0122</td> <td>0.0205</td> <td>0.0239</td> <td>0.0239</td> <td>0.0292</td> </tr> <tr> <th>(0.15, 0.85)</th> <td>0.0102</td> <td>0.0148</td> <td>0.0180</td> <td>0.0205</td> <td>0.0205</td> <td>0.0267</td> </tr> <tr> <th>(0.2, 0.8)</th> <td>0.0139</td> <td>0.0198</td> <td>0.0165</td> <td>0.0211</td> <td>0.0211</td> <td>0.0248</td> </tr> <tr> <th>(0.25, 0.75)</th> <td>0.0194</td> <td>0.0245</td> <td>0.0141</td> <td>0.0170</td> <td>0.0170</td> <td>0.0224</td> </tr> <tr> <th>(0.3, 0.7)</th> <td>0.0230</td> <td>0.0287</td> <td>0.0137</td> <td>0.0164</td> <td>0.0164</td> <td>0.0222</td> </tr> <tr> <th>(0.35, 0.65)</th> <td>0.0309</td> <td>0.0338</td> <td>0.0132</td> <td>0.0168</td> <td>0.0168</td> <td>0.0210</td> </tr> <tr> <th>(0.4, 0.6)</th> <td>0.0350</td> <td>0.0371</td> <td>0.0097</td> <td>0.0144</td> <td>0.0144</td> <td>0.0164</td> </tr> <tr> <th>(0.45, 0.55)</th> <td>0.0358</td> <td>0.0390</td> <td>0.0086</td> <td>0.0125</td> <td>0.0125</td> <td>0.0150</td> </tr> <tr> <th>(0.5, 0.5)</th> <td>0.0369</td> <td>0.0386</td> <td>0.0073</td> <td>0.0122</td> <td>0.0122</td> <td>0.0138</td> </tr> <tr> <th>(0.55, 0.45)</th> <td>0.0373</td> <td>0.0398</td> <td>0.0071</td> <td>0.0110</td> <td>0.0110</td> <td>0.0128</td> </tr> <tr> <th>(0.6, 0.4)</th> <td>0.0368</td> <td>0.0398</td> <td>0.0064</td> <td>0.0085</td> <td>0.0085</td> <td>0.0103</td> </tr> <tr> <th>(0.65, 0.35)</th> <td>0.0357</td> <td>0.0385</td> <td>0.0074</td> <td>0.0103</td> <td>0.0103</td> <td>0.0105</td> </tr> <tr> <th>(0.7, 0.3)</th> <td>0.0319</td> <td>0.0370</td> <td>0.0067</td> <td>0.0082</td> <td>0.0082</td> <td>0.0086</td> </tr> <tr> <th>(0.75, 0.25)</th> <td>0.0298</td> <td>0.0358</td> <td>0.0079</td> <td>0.0066</td> <td>0.0066</td> <td>0.0070</td> </tr> <tr> <th>(0.8, 0.2)</th> <td>0.0235</td> <td>0.0302</td> <td>0.0073</td> <td>0.0083</td> <td>0.0083</td> <td>0.0069</td> </tr> <tr> <th>(0.85, 0.15)</th> <td>0.0154</td> <td>0.0244</td> <td>0.0097</td> <td>0.0077</td> <td>0.0077</td> <td>0.0066</td> </tr> <tr> <th>(0.9, 0.1)</th> <td>0.0083</td> <td>0.0157</td> <td>0.0108</td> <td>0.0082</td> <td>0.0082</td> <td>0.0069</td> </tr> <tr> <th>(0.95, 0.05)</th> <td>0.0055</td> <td>0.0098</td> <td>0.0131</td> <td>0.0080</td> <td>0.0080</td> <td>0.0066</td> </tr> <tr> <th>(1.0, 0.0)</th> <td>0.0007</td> <td>0.0046</td> <td>0.0145</td> <td>0.0088</td> <td>0.0088</td> <td>0.0082</td> </tr> </tbody> </table> > train: [0.59996662 0.40003338] > validation: [0.59996662 0.40003338] > evaluate_bin_sld: 194.960s > evaluate_mul_sld: 53.330s > kfcv: 40.320s > atc_mc: 41.904s > atc_ne: 41.423s > doc_feat: 35.289s > tot: 196.151s <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>bin</th> <th>mul</th> <th>kfcv</th> <th>atc_mc</th> <th>atc_ne</th> <th>doc_feat</th> </tr> </thead> <tbody> <tr> <th>(0.0, 1.0)</th> <td>0.0003</td> <td>0.0055</td> <td>0.0815</td> <td>0.0285</td> <td>0.0285</td> <td>0.0825</td> </tr> <tr> <th>(0.05, 0.95)</th> <td>0.0065</td> <td>0.0127</td> <td>0.0747</td> <td>0.0278</td> <td>0.0278</td> <td>0.0758</td> </tr> <tr> <th>(0.1, 0.9)</th> <td>0.0072</td> <td>0.0172</td> <td>0.0677</td> <td>0.0224</td> <td>0.0224</td> <td>0.0688</td> </tr> <tr> <th>(0.15, 0.85)</th> <td>0.0100</td> <td>0.0257</td> <td>0.0627</td> <td>0.0218</td> <td>0.0218</td> <td>0.0638</td> </tr> <tr> <th>(0.2, 0.8)</th> <td>0.0135</td> <td>0.0308</td> <td>0.0548</td> <td>0.0180</td> <td>0.0180</td> <td>0.0560</td> </tr> <tr> <th>(0.25, 0.75)</th> <td>0.0165</td> <td>0.0338</td> <td>0.0491</td> <td>0.0160</td> <td>0.0160</td> <td>0.0503</td> </tr> <tr> <th>(0.3, 0.7)</th> <td>0.0205</td> <td>0.0409</td> <td>0.0438</td> <td>0.0168</td> <td>0.0168</td> <td>0.0450</td> </tr> <tr> <th>(0.35, 0.65)</th> <td>0.0248</td> <td>0.0459</td> <td>0.0374</td> <td>0.0156</td> <td>0.0156</td> <td>0.0386</td> </tr> <tr> <th>(0.4, 0.6)</th> <td>0.0284</td> <td>0.0491</td> <td>0.0277</td> <td>0.0112</td> <td>0.0112</td> <td>0.0290</td> </tr> <tr> <th>(0.45, 0.55)</th> <td>0.0318</td> <td>0.0515</td> <td>0.0224</td> <td>0.0099</td> <td>0.0099</td> <td>0.0237</td> </tr> <tr> <th>(0.5, 0.5)</th> <td>0.0342</td> <td>0.0516</td> <td>0.0159</td> <td>0.0081</td> <td>0.0081</td> <td>0.0170</td> </tr> <tr> <th>(0.55, 0.45)</th> <td>0.0374</td> <td>0.0519</td> <td>0.0111</td> <td>0.0073</td> <td>0.0073</td> <td>0.0121</td> </tr> <tr> <th>(0.6, 0.4)</th> <td>0.0410</td> <td>0.0537</td> <td>0.0069</td> <td>0.0079</td> <td>0.0079</td> <td>0.0075</td> </tr> <tr> <th>(0.65, 0.35)</th> <td>0.0444</td> <td>0.0517</td> <td>0.0064</td> <td>0.0076</td> <td>0.0076</td> <td>0.0064</td> </tr> <tr> <th>(0.7, 0.3)</th> <td>0.0438</td> <td>0.0502</td> <td>0.0100</td> <td>0.0085</td> <td>0.0085</td> <td>0.0090</td> </tr> <tr> <th>(0.75, 0.25)</th> <td>0.0458</td> <td>0.0483</td> <td>0.0171</td> <td>0.0089</td> <td>0.0089</td> <td>0.0157</td> </tr> <tr> <th>(0.8, 0.2)</th> <td>0.0412</td> <td>0.0419</td> <td>0.0218</td> <td>0.0105</td> <td>0.0105</td> <td>0.0204</td> </tr> <tr> <th>(0.85, 0.15)</th> <td>0.0319</td> <td>0.0348</td> <td>0.0291</td> <td>0.0117</td> <td>0.0117</td> <td>0.0276</td> </tr> <tr> <th>(0.9, 0.1)</th> <td>0.0192</td> <td>0.0254</td> <td>0.0358</td> <td>0.0147</td> <td>0.0147</td> <td>0.0343</td> </tr> <tr> <th>(0.95, 0.05)</th> <td>0.0079</td> <td>0.0154</td> <td>0.0427</td> <td>0.0166</td> <td>0.0166</td> <td>0.0412</td> </tr> <tr> <th>(1.0, 0.0)</th> <td>0.0005</td> <td>0.0034</td> <td>0.0490</td> <td>0.0190</td> <td>0.0190</td> <td>0.0474</td> </tr> </tbody> </table> > train: [0.69993324 0.30006676] > validation: [0.70010013 0.29989987] > evaluate_bin_sld: 196.856s > evaluate_mul_sld: 54.245s > kfcv: 41.167s > atc_mc: 42.203s > atc_ne: 41.565s > doc_feat: 34.998s > tot: 198.332s <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>bin</th> <th>mul</th> <th>kfcv</th> <th>atc_mc</th> <th>atc_ne</th> <th>doc_feat</th> </tr> </thead> <tbody> <tr> <th>(0.0, 1.0)</th> <td>0.0003</td> <td>0.0071</td> <td>0.1570</td> <td>0.0625</td> <td>0.0625</td> <td>0.1677</td> </tr> <tr> <th>(0.05, 0.95)</th> <td>0.0089</td> <td>0.0102</td> <td>0.1428</td> <td>0.0548</td> <td>0.0548</td> <td>0.1536</td> </tr> <tr> <th>(0.1, 0.9)</th> <td>0.0078</td> <td>0.0121</td> <td>0.1327</td> <td>0.0521</td> <td>0.0521</td> <td>0.1435</td> </tr> <tr> <th>(0.15, 0.85)</th> <td>0.0073</td> <td>0.0155</td> <td>0.1227</td> <td>0.0517</td> <td>0.0517</td> <td>0.1336</td> </tr> <tr> <th>(0.2, 0.8)</th> <td>0.0081</td> <td>0.0196</td> <td>0.1094</td> <td>0.0464</td> <td>0.0464</td> <td>0.1203</td> </tr> <tr> <th>(0.25, 0.75)</th> <td>0.0095</td> <td>0.0225</td> <td>0.1001</td> <td>0.0427</td> <td>0.0427</td> <td>0.1111</td> </tr> <tr> <th>(0.3, 0.7)</th> <td>0.0117</td> <td>0.0272</td> <td>0.0885</td> <td>0.0400</td> <td>0.0400</td> <td>0.0995</td> </tr> <tr> <th>(0.35, 0.65)</th> <td>0.0131</td> <td>0.0309</td> <td>0.0774</td> <td>0.0368</td> <td>0.0368</td> <td>0.0885</td> </tr> <tr> <th>(0.4, 0.6)</th> <td>0.0144</td> <td>0.0333</td> <td>0.0626</td> <td>0.0307</td> <td>0.0307</td> <td>0.0737</td> </tr> <tr> <th>(0.45, 0.55)</th> <td>0.0179</td> <td>0.0365</td> <td>0.0528</td> <td>0.0297</td> <td>0.0297</td> <td>0.0640</td> </tr> <tr> <th>(0.5, 0.5)</th> <td>0.0183</td> <td>0.0359</td> <td>0.0418</td> <td>0.0259</td> <td>0.0259</td> <td>0.0531</td> </tr> <tr> <th>(0.55, 0.45)</th> <td>0.0189</td> <td>0.0369</td> <td>0.0313</td> <td>0.0222</td> <td>0.0222</td> <td>0.0426</td> </tr> <tr> <th>(0.6, 0.4)</th> <td>0.0220</td> <td>0.0379</td> <td>0.0201</td> <td>0.0190</td> <td>0.0190</td> <td>0.0314</td> </tr> <tr> <th>(0.65, 0.35)</th> <td>0.0218</td> <td>0.0364</td> <td>0.0104</td> <td>0.0160</td> <td>0.0160</td> <td>0.0208</td> </tr> <tr> <th>(0.7, 0.3)</th> <td>0.0229</td> <td>0.0371</td> <td>0.0067</td> <td>0.0119</td> <td>0.0119</td> <td>0.0096</td> </tr> <tr> <th>(0.75, 0.25)</th> <td>0.0250</td> <td>0.0378</td> <td>0.0161</td> <td>0.0101</td> <td>0.0101</td> <td>0.0067</td> </tr> <tr> <th>(0.8, 0.2)</th> <td>0.0237</td> <td>0.0333</td> <td>0.0259</td> <td>0.0082</td> <td>0.0082</td> <td>0.0143</td> </tr> <tr> <th>(0.85, 0.15)</th> <td>0.0227</td> <td>0.0282</td> <td>0.0381</td> <td>0.0060</td> <td>0.0060</td> <td>0.0265</td> </tr> <tr> <th>(0.9, 0.1)</th> <td>0.0180</td> <td>0.0202</td> <td>0.0499</td> <td>0.0049</td> <td>0.0049</td> <td>0.0382</td> </tr> <tr> <th>(0.95, 0.05)</th> <td>0.0097</td> <td>0.0117</td> <td>0.0607</td> <td>0.0072</td> <td>0.0072</td> <td>0.0489</td> </tr> <tr> <th>(1.0, 0.0)</th> <td>0.0014</td> <td>0.0024</td> <td>0.0724</td> <td>0.0103</td> <td>0.0103</td> <td>0.0606</td> </tr> </tbody> </table> > train: [0.79989987 0.20010013] > validation: [0.80006676 0.19993324] > evaluate_bin_sld: 197.725s > evaluate_mul_sld: 53.526s > kfcv: 40.971s > atc_mc: 41.975s > atc_ne: 41.358s > doc_feat: 35.091s > tot: 199.051s <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>bin</th> <th>mul</th> <th>kfcv</th> <th>atc_mc</th> <th>atc_ne</th> <th>doc_feat</th> </tr> </thead> <tbody> <tr> <th>(0.0, 1.0)</th> <td>0.0009</td> <td>0.0082</td> <td>0.3148</td> <td>0.0571</td> <td>0.0571</td> <td>0.3213</td> </tr> <tr> <th>(0.05, 0.95)</th> <td>0.0297</td> <td>0.0223</td> <td>0.2925</td> <td>0.0492</td> <td>0.0492</td> <td>0.2991</td> </tr> <tr> <th>(0.1, 0.9)</th> <td>0.0283</td> <td>0.0209</td> <td>0.2733</td> <td>0.0493</td> <td>0.0493</td> <td>0.2800</td> </tr> <tr> <th>(0.15, 0.85)</th> <td>0.0247</td> <td>0.0182</td> <td>0.2528</td> <td>0.0447</td> <td>0.0447</td> <td>0.2596</td> </tr> <tr> <th>(0.2, 0.8)</th> <td>0.0216</td> <td>0.0156</td> <td>0.2328</td> <td>0.0407</td> <td>0.0407</td> <td>0.2397</td> </tr> <tr> <th>(0.25, 0.75)</th> <td>0.0170</td> <td>0.0136</td> <td>0.2136</td> <td>0.0425</td> <td>0.0425</td> <td>0.2205</td> </tr> <tr> <th>(0.3, 0.7)</th> <td>0.0146</td> <td>0.0126</td> <td>0.1941</td> <td>0.0384</td> <td>0.0384</td> <td>0.2012</td> </tr> <tr> <th>(0.35, 0.65)</th> <td>0.0125</td> <td>0.0113</td> <td>0.1734</td> <td>0.0331</td> <td>0.0331</td> <td>0.1806</td> </tr> <tr> <th>(0.4, 0.6)</th> <td>0.0113</td> <td>0.0110</td> <td>0.1510</td> <td>0.0272</td> <td>0.0272</td> <td>0.1583</td> </tr> <tr> <th>(0.45, 0.55)</th> <td>0.0093</td> <td>0.0135</td> <td>0.1328</td> <td>0.0247</td> <td>0.0247</td> <td>0.1402</td> </tr> <tr> <th>(0.5, 0.5)</th> <td>0.0088</td> <td>0.0135</td> <td>0.1131</td> <td>0.0222</td> <td>0.0222</td> <td>0.1206</td> </tr> <tr> <th>(0.55, 0.45)</th> <td>0.0092</td> <td>0.0155</td> <td>0.0919</td> <td>0.0207</td> <td>0.0207</td> <td>0.0995</td> </tr> <tr> <th>(0.6, 0.4)</th> <td>0.0092</td> <td>0.0173</td> <td>0.0742</td> <td>0.0190</td> <td>0.0190</td> <td>0.0819</td> </tr> <tr> <th>(0.65, 0.35)</th> <td>0.0087</td> <td>0.0178</td> <td>0.0544</td> <td>0.0161</td> <td>0.0161</td> <td>0.0621</td> </tr> <tr> <th>(0.7, 0.3)</th> <td>0.0093</td> <td>0.0197</td> <td>0.0323</td> <td>0.0124</td> <td>0.0124</td> <td>0.0401</td> </tr> <tr> <th>(0.75, 0.25)</th> <td>0.0101</td> <td>0.0218</td> <td>0.0114</td> <td>0.0093</td> <td>0.0093</td> <td>0.0187</td> </tr> <tr> <th>(0.8, 0.2)</th> <td>0.0117</td> <td>0.0208</td> <td>0.0098</td> <td>0.0088</td> <td>0.0088</td> <td>0.0063</td> </tr> <tr> <th>(0.85, 0.15)</th> <td>0.0103</td> <td>0.0178</td> <td>0.0285</td> <td>0.0064</td> <td>0.0064</td> <td>0.0204</td> </tr> <tr> <th>(0.9, 0.1)</th> <td>0.0103</td> <td>0.0164</td> <td>0.0480</td> <td>0.0062</td> <td>0.0062</td> <td>0.0398</td> </tr> <tr> <th>(0.95, 0.05)</th> <td>0.0092</td> <td>0.0117</td> <td>0.0684</td> <td>0.0071</td> <td>0.0071</td> <td>0.0601</td> </tr> <tr> <th>(1.0, 0.0)</th> <td>0.0011</td> <td>0.0019</td> <td>0.0887</td> <td>0.0097</td> <td>0.0097</td> <td>0.0803</td> </tr> </tbody> </table> > train: [0.90003338 0.09996662] > validation: [0.90003338 0.09996662] > evaluate_bin_sld: 201.315s > evaluate_mul_sld: 50.974s > kfcv: 40.175s > atc_mc: 41.663s > atc_ne: 41.058s > doc_feat: 35.055s > tot: 202.573s <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>bin</th> <th>mul</th> <th>kfcv</th> <th>atc_mc</th> <th>atc_ne</th> <th>doc_feat</th> </tr> </thead> <tbody> <tr> <th>(0.0, 1.0)</th> <td>0.0321</td> <td>0.0184</td> <td>0.6421</td> <td>0.1336</td> <td>0.1336</td> <td>0.6454</td> </tr> <tr> <th>(0.05, 0.95)</th> <td>0.0835</td> <td>0.0729</td> <td>0.6056</td> <td>0.1244</td> <td>0.1244</td> <td>0.6090</td> </tr> <tr> <th>(0.1, 0.9)</th> <td>0.1080</td> <td>0.0976</td> <td>0.5703</td> <td>0.1204</td> <td>0.1204</td> <td>0.5739</td> </tr> <tr> <th>(0.15, 0.85)</th> <td>0.1154</td> <td>0.0971</td> <td>0.5354</td> <td>0.1147</td> <td>0.1147</td> <td>0.5390</td> </tr> <tr> <th>(0.2, 0.8)</th> <td>0.1081</td> <td>0.0916</td> <td>0.5007</td> <td>0.1064</td> <td>0.1064</td> <td>0.5045</td> </tr> <tr> <th>(0.25, 0.75)</th> <td>0.1032</td> <td>0.0830</td> <td>0.4632</td> <td>0.1005</td> <td>0.1005</td> <td>0.4671</td> </tr> <tr> <th>(0.3, 0.7)</th> <td>0.0945</td> <td>0.0775</td> <td>0.4274</td> <td>0.0916</td> <td>0.0916</td> <td>0.4313</td> </tr> <tr> <th>(0.35, 0.65)</th> <td>0.0966</td> <td>0.0709</td> <td>0.3914</td> <td>0.0843</td> <td>0.0843</td> <td>0.3954</td> </tr> <tr> <th>(0.4, 0.6)</th> <td>0.0795</td> <td>0.0639</td> <td>0.3543</td> <td>0.0748</td> <td>0.0748</td> <td>0.3584</td> </tr> <tr> <th>(0.45, 0.55)</th> <td>0.0735</td> <td>0.0533</td> <td>0.3210</td> <td>0.0728</td> <td>0.0728</td> <td>0.3253</td> </tr> <tr> <th>(0.5, 0.5)</th> <td>0.0716</td> <td>0.0473</td> <td>0.2829</td> <td>0.0633</td> <td>0.0633</td> <td>0.2873</td> </tr> <tr> <th>(0.55, 0.45)</th> <td>0.0550</td> <td>0.0393</td> <td>0.2465</td> <td>0.0568</td> <td>0.0568</td> <td>0.2509</td> </tr> <tr> <th>(0.6, 0.4)</th> <td>0.0505</td> <td>0.0317</td> <td>0.2117</td> <td>0.0509</td> <td>0.0509</td> <td>0.2162</td> </tr> <tr> <th>(0.65, 0.35)</th> <td>0.0403</td> <td>0.0226</td> <td>0.1741</td> <td>0.0438</td> <td>0.0438</td> <td>0.1788</td> </tr> <tr> <th>(0.7, 0.3)</th> <td>0.0372</td> <td>0.0178</td> <td>0.1387</td> <td>0.0348</td> <td>0.0348</td> <td>0.1434</td> </tr> <tr> <th>(0.75, 0.25)</th> <td>0.0262</td> <td>0.0122</td> <td>0.1009</td> <td>0.0256</td> <td>0.0256</td> <td>0.1057</td> </tr> <tr> <th>(0.8, 0.2)</th> <td>0.0248</td> <td>0.0110</td> <td>0.0651</td> <td>0.0194</td> <td>0.0194</td> <td>0.0701</td> </tr> <tr> <th>(0.85, 0.15)</th> <td>0.0181</td> <td>0.0075</td> <td>0.0298</td> <td>0.0128</td> <td>0.0128</td> <td>0.0348</td> </tr> <tr> <th>(0.9, 0.1)</th> <td>0.0129</td> <td>0.0093</td> <td>0.0069</td> <td>0.0080</td> <td>0.0080</td> <td>0.0037</td> </tr> <tr> <th>(0.95, 0.05)</th> <td>0.0077</td> <td>0.0085</td> <td>0.0426</td> <td>0.0046</td> <td>0.0046</td> <td>0.0373</td> </tr> <tr> <th>(1.0, 0.0)</th> <td>0.0010</td> <td>0.0010</td> <td>0.0789</td> <td>0.0088</td> <td>0.0088</td> <td>0.0735</td> </tr> </tbody> </table>