location sync added, missing plot bug fixed

This commit is contained in:
Lorenzo Volpi 2023-11-22 19:19:51 +01:00
parent 1123940954
commit f7b566c4a4
3 changed files with 190 additions and 117 deletions

View File

@ -9,8 +9,23 @@ from qcpanel.viewer import QuaccTestViewer
pn.config.notifications = True
def serve(address="localhost"):
qtv = QuaccTestViewer()
def app_instance():
param_init = {
k: v
for k, v in pn.state.location.query_params.items()
if k in ["dataset", "metric", "plot_view", "mode", "estimators"]
}
qtv = QuaccTestViewer(param_init=param_init)
pn.state.location.sync(
qtv,
{
"dataset": "dataset",
"metric": "metric",
"plot_view": "plot_view",
"mode": "mode",
"estimators": "estimators",
},
)
def save_callback(event):
app.open_modal()
@ -48,13 +63,17 @@ def serve(address="localhost"):
)
app.servable()
return app
def serve(address="localhost"):
__port = 33420
__allowed = [address]
if address == "localhost":
__allowed.append("127.0.0.1")
pn.serve(
app,
app_instance,
autoreload=True,
port=__port,
show=False,
@ -76,4 +95,4 @@ def run():
if __name__ == "__main__":
serve()
run()

View File

@ -1,7 +1,6 @@
import os
from collections import defaultdict
from pathlib import Path
from typing import Dict, List
import panel as pn
@ -10,118 +9,112 @@ from quacc.evaluation.report import DatasetReport
_plot_sizing_mode = "stretch_both"
valid_plot_modes = defaultdict(
lambda: ["delta", "delta_stdev", "diagonal", "shift", "table", "shift_table"]
lambda: [
"delta_train",
"stdev_train",
"train_table",
"shift",
"shift_table",
"diagonal",
]
)
valid_plot_modes["avg"] = [
"delta_train",
"stdev_train",
"train_table",
"shift",
"shift_table",
"delta_test",
"stdev_test",
"shift",
"train_table",
"test_table",
"shift_table",
]
def create_cr_plots(
def create_plots(
dr: DatasetReport,
mode="delta",
metric="acc",
estimators=None,
prev=None,
plot_view=None,
):
_prevs = [round(cr.train_prev[1] * 100) for cr in dr.crs]
idx = _prevs.index(prev)
cr = dr.crs[idx]
estimators = CE.name[estimators]
if mode is None:
mode = valid_plot_modes[str(prev)][0]
mode = valid_plot_modes[plot_view][0]
_dpi = 112
if mode == "table":
return pn.pane.DataFrame(
cr.data(metric=metric, estimators=estimators).groupby(level=0).mean(),
align="center",
)
elif mode == "shift_table":
return pn.pane.DataFrame(
cr.shift_data(metric=metric, estimators=estimators).groupby(level=0).mean(),
align="center",
)
else:
return pn.pane.Matplotlib(
cr.get_plots(
match (plot_view, mode):
case ("avg", "train_table"):
_data = (
dr.data(metric=metric, estimators=estimators).groupby(level=1).mean()
)
return pn.pane.DataFrame(_data, align="center") if not _data.empty else None
case ("avg", "test_table"):
_data = (
dr.data(metric=metric, estimators=estimators).groupby(level=0).mean()
)
return pn.pane.DataFrame(_data, align="center") if not _data.empty else None
case ("avg", "shift_table"):
_data = (
dr.shift_data(metric=metric, estimators=estimators)
.groupby(level=0)
.mean()
)
return pn.pane.DataFrame(_data, align="center") if not _data.empty else None
case ("avg", _ as plot_mode):
_plot = dr.get_plots(
mode=mode,
metric=metric,
estimators=estimators,
conf="panel",
return_fig=True,
),
tight=True,
format="png",
sizing_mode=_plot_sizing_mode,
# sizing_mode="scale_height",
# sizing_mode="scale_both",
)
def create_avg_plots(
dr: DatasetReport,
mode="delta",
metric="acc",
estimators=None,
):
estimators = CE.name[estimators]
if mode is None:
mode = valid_plot_modes["avg"][0]
if mode == "train_table":
return pn.pane.DataFrame(
dr.data(metric=metric, estimators=estimators).groupby(level=1).mean(),
align="center",
)
elif mode == "test_table":
return pn.pane.DataFrame(
dr.data(metric=metric, estimators=estimators).groupby(level=0).mean(),
align="center",
)
elif mode == "shift_table":
return pn.pane.DataFrame(
dr.shift_data(metric=metric, estimators=estimators).groupby(level=0).mean(),
align="center",
)
return pn.pane.Matplotlib(
dr.get_plots(
mode=mode,
metric=metric,
estimators=estimators,
conf="panel",
return_fig=True,
),
tight=True,
format="png",
# sizing_mode="scale_height",
sizing_mode=_plot_sizing_mode,
# sizing_mode="scale_both",
)
def build_plot(
datasets: Dict[str, DatasetReport],
dst: str,
metric: str,
estimators: List[str],
view: str,
mode: str,
):
_dr = datasets[dst]
if view == "avg":
return create_avg_plots(_dr, mode=mode, metric=metric, estimators=estimators)
else:
prev = int(view)
return create_cr_plots(
_dr, mode=mode, metric=metric, estimators=estimators, prev=prev
)
)
return (
pn.pane.Matplotlib(
_plot,
tight=True,
format="png",
# sizing_mode="scale_height",
sizing_mode=_plot_sizing_mode,
# sizing_mode="scale_both",
)
if _plot is not None
else None
)
case (_, "train_table"):
cr = dr.crs[_prevs.index(int(plot_view))]
_data = (
cr.data(metric=metric, estimators=estimators).groupby(level=0).mean()
)
return pn.pane.DataFrame(_data, align="center") if not _data.empty else None
case (_, "shift_table"):
cr = dr.crs[_prevs.index(int(plot_view))]
_data = (
cr.shift_data(metric=metric, estimators=estimators)
.groupby(level=0)
.mean()
)
return pn.pane.DataFrame(_data, align="center") if not _data.empty else None
case (_, _ as plot_mode):
cr = dr.crs[_prevs.index(int(plot_view))]
_plot = cr.get_plots(
mode=plot_mode,
metric=metric,
estimators=estimators,
conf="panel",
return_fig=True,
)
return (
pn.pane.Matplotlib(
_plot,
tight=True,
format="png",
sizing_mode=_plot_sizing_mode,
# sizing_mode="scale_height",
# sizing_mode="scale_both",
)
if _plot is not None
else None
)
def explore_datasets(root: Path | str):

View File

@ -1,10 +1,12 @@
import os
from pathlib import Path
import numpy as np
import pandas as pd
import panel as pn
import param
from qcpanel.util import build_plot, explore_datasets, valid_plot_modes
from qcpanel.util import create_plots, explore_datasets, valid_plot_modes
from quacc.evaluation.comp import CE
from quacc.evaluation.report import DatasetReport
@ -29,15 +31,24 @@ class QuaccTestViewer(param.Parameterized):
plot_pane = param.Parameter()
modal_pane = param.Parameter()
def __init__(self, **params):
def __init__(self, param_init=None, **params):
super().__init__(**params)
self.param_init = param_init
self.__setup_watchers()
self.update_datasets()
# self._update_on_dataset()
self.__create_param_pane()
self.__create_modal_pane()
def __get_param_init(self, val):
__b = val in self.param_init
if __b:
setattr(self, val, self.param_init[val])
del self.param_init[val]
return __b
def __save_callback(self, event):
_home = Path("output")
_save_input_val = self.save_input.value_input
@ -233,8 +244,14 @@ class QuaccTestViewer(param.Parameterized):
}
self.available_datasets = list(self.datasets_.keys())
_old_dataset = self.dataset
self.param["dataset"].objects = self.available_datasets
self.dataset = self.available_datasets[0]
if not self.__get_param_init("dataset"):
self.dataset = (
_old_dataset
if _old_dataset in self.available_datasets
else self.available_datasets[0]
)
def __setup_watchers(self):
self.param.watch(
@ -244,41 +261,57 @@ class QuaccTestViewer(param.Parameterized):
precedence=0,
)
self.param.watch(self._update_on_view, ["plot_view"], queued=True, precedence=1)
self.param.watch(self._update_on_metric, ["metric"], queued=True, precedence=2)
self.param.watch(
self._update_plot,
["dataset", "metric", "estimators", "plot_view", "mode"],
# ["metric", "estimators", "mode"],
onlychanged=False,
precedence=2,
precedence=3,
)
self.param.watch(
self._update_on_estimators,
["estimators"],
queued=True,
precedence=3,
precedence=4,
)
def _update_on_dataset(self, *events):
l_dr = self.datasets_[self.dataset]
l_data = l_dr.data()
l_metrics = l_data.columns.unique(0)
l_estimators = l_data.columns.unique(1)
l_valid_estimators = [e for e in l_estimators if e != "ref"]
l_valid_metrics = [m for m in l_metrics if not m.endswith("_score")]
l_valid_views = [str(round(cr.train_prev[1] * 100)) for cr in l_dr.crs]
_old_metric = self.metric
self.param["metric"].objects = l_valid_metrics
self.metric = l_valid_metrics[0]
if not self.__get_param_init("metric"):
self.metric = (
_old_metric if _old_metric in l_valid_metrics else l_valid_metrics[0]
)
_old_estimators = self.estimators
l_valid_estimators = l_dr.data(metric=self.metric).columns.unique(0).to_numpy()
_new_estimators = l_valid_estimators[
np.isin(l_valid_estimators, _old_estimators)
].tolist()
self.param["estimators"].objects = l_valid_estimators
self.estimators = l_valid_estimators
if not self.__get_param_init("estimators"):
self.estimators = _new_estimators
self.param["plot_view"].objects = ["avg"] + l_valid_views
self.plot_view = "avg"
l_valid_views = [str(round(cr.train_prev[1] * 100)) for cr in l_dr.crs]
l_valid_views = ["avg"] + l_valid_views
_old_view = self.plot_view
self.param["plot_view"].objects = l_valid_views
if not self.__get_param_init("plot_view"):
self.plot_view = _old_view if _old_view in l_valid_views else "avg"
self.param["mode"].objects = valid_plot_modes["avg"]
self.mode = valid_plot_modes["avg"][0]
self.param["mode"].objects = valid_plot_modes[self.plot_view]
if not self.__get_param_init("mode"):
_old_mode = self.mode
if _old_mode in valid_plot_modes[self.plot_view]:
self.mode = _old_mode
else:
self.mode = valid_plot_modes[self.plot_view][0]
self.param["modal_estimators"].objects = l_valid_estimators
self.modal_estimators = []
@ -287,21 +320,49 @@ class QuaccTestViewer(param.Parameterized):
self.modal_plot_view = l_valid_views.copy()
def _update_on_view(self, *events):
_old_mode = self.mode
self.param["mode"].objects = valid_plot_modes[self.plot_view]
self.mode = valid_plot_modes[self.plot_view][0]
if _old_mode in valid_plot_modes[self.plot_view]:
self.mode = _old_mode
else:
self.mode = valid_plot_modes[self.plot_view][0]
def _update_on_metric(self, *events):
_old_estimators = self.estimators
l_dr = self.datasets_[self.dataset]
l_data: pd.DataFrame = l_dr.data(metric=self.metric)
l_valid_estimators: np.ndarray = l_data.columns.unique(0).to_numpy()
_new_estimators = l_valid_estimators[
np.isin(l_valid_estimators, _old_estimators)
].tolist()
self.param["estimators"].objects = l_valid_estimators
self.estimators = _new_estimators
def _update_on_estimators(self, *events):
self.modal_estimators = self.estimators.copy()
def _update_plot(self, *events):
self.plot_pane = build_plot(
datasets=self.datasets_,
dst=self.dataset,
metric=self.metric,
estimators=self.estimators,
view=self.plot_view,
mode=self.mode,
__svg = pn.pane.SVG(
"""<svg xmlns="http://www.w3.org/2000/svg" class="icon icon-tabler icon-tabler-chart-area-filled" width="24" height="24" viewBox="0 0 24 24" stroke-width="2" stroke="currentColor" fill="none" stroke-linecap="round" stroke-linejoin="round">
<path stroke="none" d="M0 0h24v24H0z" fill="none" />
<path d="M20 18a1 1 0 0 1 .117 1.993l-.117 .007h-16a1 1 0 0 1 -.117 -1.993l.117 -.007h16z" stroke-width="0" fill="currentColor" />
<path d="M15.22 5.375a1 1 0 0 1 1.393 -.165l.094 .083l4 4a1 1 0 0 1 .284 .576l.009 .131v5a1 1 0 0 1 -.883 .993l-.117 .007h-16.022l-.11 -.009l-.11 -.02l-.107 -.034l-.105 -.046l-.1 -.059l-.094 -.07l-.06 -.055l-.072 -.082l-.064 -.089l-.054 -.096l-.016 -.035l-.04 -.103l-.027 -.106l-.015 -.108l-.004 -.11l.009 -.11l.019 -.105c.01 -.04 .022 -.077 .035 -.112l.046 -.105l.059 -.1l4 -6a1 1 0 0 1 1.165 -.39l.114 .05l3.277 1.638l3.495 -4.369z" stroke-width="0" fill="currentColor" />
</svg>""",
sizing_mode="stretch_both",
)
if len(self.estimators) == 0:
self.plot_pane = __svg
else:
_dr = self.datasets_[self.dataset]
__plot = create_plots(
_dr,
mode=self.mode,
metric=self.metric,
estimators=self.estimators,
plot_view=self.plot_view,
)
self.plot_pane = __svg if __plot is None else __plot
def get_plot(self):
return self.plot_pane