prevs bug fixed, testing results loading

This commit is contained in:
Lorenzo Volpi 2024-04-05 15:52:05 +02:00
parent 7854569c5e
commit f787c4510d
1 changed files with 21 additions and 14 deletions

View File

@ -2,7 +2,6 @@ import itertools
import os
import quapy as qp
from ClassifierAccuracy.util.plotting import plot_diagonal
from quapy.protocol import UPP
from quacc.dataset import save_dataset_stats
@ -16,7 +15,7 @@ from quacc.experiments.generators import (
gen_multi_datasets,
gen_tweet_datasets,
)
from quacc.experiments.report import TestReport
from quacc.experiments.report import Report, TestReport
from quacc.experiments.util import (
fit_method,
predictionsCAP,
@ -63,13 +62,14 @@ for (cls_name, h), (dataset_name, (L, V, U)) in itertools.product(
for acc_name, acc_fn in gen_acc_measure():
true_accs[acc_name] = [true_acc(h, acc_fn, Ui) for Ui in test_prot()]
print("CAP methods")
# instances of ClassifierAccuracyPrediction are bound to the evaluation measure, so they
# must be nested in the acc-for
for acc_name, acc_fn in gen_acc_measure():
print(f"\tfor measure {acc_name}")
for method_name, method in gen_CAP(h, acc_fn, with_oracle=ORACLE):
report = TestReport(cls_name, acc_name, dataset_name, method_name)
if os.path.exists(report.path(basedir)):
report = TestReport(basedir, cls_name, acc_name, dataset_name, method_name)
if os.path.exists(report.path):
print(f"\t\t{method_name}-{acc_name} exists, skipping")
continue
@ -85,6 +85,7 @@ for (cls_name, h), (dataset_name, (L, V, U)) in itertools.product(
t_test_ave=t_test_ave,
).save_json(basedir)
print("\nCAP_cont_table methods")
# instances of CAPContingencyTable instead are generic, and the evaluation measure can
# be nested to the predictions to speed up things
for method_name, method in gen_CAP_cont_table(h):
@ -100,9 +101,11 @@ for (cls_name, h), (dataset_name, (L, V, U)) in itertools.product(
estim_accs_dict, t_test_ave = predictionsCAPcont_table(
method, test_prot, gen_acc_measure, ORACLE
)
for acc_name in estim_accs_dict.keys():
report = TestReport(cls_name, acc_name, dataset_name, method_name)
for acc_name, estim_accs in estim_accs_dict.items():
report = TestReport(basedir, cls_name, acc_name, dataset_name, method_name)
test_prevs = prevs_from_prot(test_prot)
report.add_result(
test_prevs=test_prevs,
true_accs=true_accs[acc_name],
estim_accs=estim_accs,
t_train=t_train,
@ -111,14 +114,18 @@ for (cls_name, h), (dataset_name, (L, V, U)) in itertools.product(
print()
# generate diagonal plots
# generate plots
print("generating plots")
for (cls_name, _), (acc_name, _) in itertools.product(
gen_classifiers(), gen_acc_measure()
):
plot_diagonal(basedir, cls_name, acc_name)
for dataset_name, _ in gen_datasets(only_names=True):
plot_diagonal(basedir, cls_name, acc_name, dataset_name=dataset_name)
rep = Report.load_results(basedir)
for rs in rep.results:
print(rs.path)
print("generating tables")
# for (cls_name, _), (acc_name, _) in itertools.product(
# gen_classifiers(), gen_acc_measure()
# ):
# plot_diagonal(basedir, cls_name, acc_name)
# for dataset_name, _ in gen_datasets(only_names=True):
# plot_diagonal(basedir, cls_name, acc_name, dataset_name=dataset_name)
# print("generating tables")
# gen_tables(basedir, datasets=[d for d, _ in gen_datasets(only_names=True)])