plotly plot backend added

This commit is contained in:
Lorenzo Volpi 2023-11-29 03:56:01 +01:00
parent f0bfb2e039
commit c670f48b5b
2 changed files with 201 additions and 265 deletions

View File

@ -1,265 +0,0 @@
from pathlib import Path
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from cycler import cycler
from quacc import utils
matplotlib.use("agg")
def _get_markers(n: int):
ls = "ovx+sDph*^1234X><.Pd"
if n > len(ls):
ls = ls * (n / len(ls) + 1)
return list(ls)[:n]
def plot_delta(
base_prevs,
columns,
data,
*,
stdevs=None,
pos_class=1,
metric="acc",
name="default",
train_prev=None,
legend=True,
avg=None,
return_fig=False,
base_path=None,
) -> Path:
_base_title = "delta_stdev" if stdevs is not None else "delta"
if train_prev is not None:
t_prev_pos = int(round(train_prev[pos_class] * 100))
title = f"{_base_title}_{name}_{t_prev_pos}_{metric}"
else:
title = f"{_base_title}_{name}_avg_{avg}_{metric}"
if base_path is None:
base_path = utils.get_quacc_home() / "plots"
fig, ax = plt.subplots()
ax.set_aspect("auto")
ax.grid()
NUM_COLORS = len(data)
cm = plt.get_cmap("tab10")
if NUM_COLORS > 10:
cm = plt.get_cmap("tab20")
cy = cycler(color=[cm(i) for i in range(NUM_COLORS)])
base_prevs = base_prevs[:, pos_class]
for method, deltas, _cy in zip(columns, data, cy):
ax.plot(
base_prevs,
deltas,
label=method,
color=_cy["color"],
linestyle="-",
marker="o",
markersize=3,
zorder=2,
)
if stdevs is not None:
_col_idx = np.where(columns == method)[0]
stdev = stdevs[_col_idx].flatten()
nn_idx = np.intersect1d(
np.where(deltas != np.nan)[0],
np.where(stdev != np.nan)[0],
)
_bps, _ds, _st = base_prevs[nn_idx], deltas[nn_idx], stdev[nn_idx]
ax.fill_between(
_bps,
_ds - _st,
_ds + _st,
color=_cy["color"],
alpha=0.25,
)
x_label = "test" if avg is None or avg == "train" else "train"
ax.set(
xlabel=f"{x_label} prevalence",
ylabel=metric,
title=title,
)
if legend:
ax.legend(loc="center left", bbox_to_anchor=(1, 0.5))
if return_fig:
return fig
output_path = base_path / f"{title}.png"
fig.savefig(output_path, bbox_inches="tight")
return output_path
def plot_diagonal(
reference,
columns,
data,
*,
pos_class=1,
metric="acc",
name="default",
train_prev=None,
legend=True,
return_fig=False,
base_path=None,
):
if train_prev is not None:
t_prev_pos = int(round(train_prev[pos_class] * 100))
title = f"diagonal_{name}_{t_prev_pos}_{metric}"
else:
title = f"diagonal_{name}_{metric}"
if base_path is None:
base_path = utils.get_quacc_home() / "plots"
fig, ax = plt.subplots()
ax.set_aspect("auto")
ax.grid()
ax.set_aspect("equal")
NUM_COLORS = len(data)
cm = plt.get_cmap("tab10")
if NUM_COLORS > 10:
cm = plt.get_cmap("tab20")
cy = cycler(
color=[cm(i) for i in range(NUM_COLORS)],
marker=_get_markers(NUM_COLORS),
)
reference = np.array(reference)
x_ticks = np.unique(reference)
x_ticks.sort()
for deltas, _cy in zip(data, cy):
ax.plot(
reference,
deltas,
color=_cy["color"],
linestyle="None",
marker=_cy["marker"],
markersize=3,
zorder=2,
alpha=0.25,
)
# ensure limits are equal for both axes
_alims = np.stack(((ax.get_xlim(), ax.get_ylim())), axis=-1)
_lims = np.array([f(ls) for f, ls in zip([np.min, np.max], _alims)])
ax.set(xlim=tuple(_lims), ylim=tuple(_lims))
for method, deltas, _cy in zip(columns, data, cy):
slope, interc = np.polyfit(reference, deltas, 1)
y_lr = np.array([slope * x + interc for x in _lims])
ax.plot(
_lims,
y_lr,
label=method,
color=_cy["color"],
linestyle="-",
markersize="0",
zorder=1,
)
# plot reference line
ax.plot(
_lims,
_lims,
color="black",
linestyle="--",
markersize=0,
zorder=1,
)
ax.set(xlabel=f"true {metric}", ylabel=f"estim. {metric}", title=title)
if legend:
ax.legend(loc="center left", bbox_to_anchor=(1, 0.5))
if return_fig:
return fig
output_path = base_path / f"{title}.png"
fig.savefig(output_path, bbox_inches="tight")
return output_path
def plot_shift(
shift_prevs,
columns,
data,
*,
counts=None,
pos_class=1,
metric="acc",
name="default",
train_prev=None,
legend=True,
return_fig=False,
base_path=None,
) -> Path:
if train_prev is not None:
t_prev_pos = int(round(train_prev[pos_class] * 100))
title = f"shift_{name}_{t_prev_pos}_{metric}"
else:
title = f"shift_{name}_avg_{metric}"
if base_path is None:
base_path = utils.get_quacc_home() / "plots"
fig, ax = plt.subplots()
ax.set_aspect("auto")
ax.grid()
NUM_COLORS = len(data)
cm = plt.get_cmap("tab10")
if NUM_COLORS > 10:
cm = plt.get_cmap("tab20")
cy = cycler(color=[cm(i) for i in range(NUM_COLORS)])
shift_prevs = shift_prevs[:, pos_class]
for method, shifts, _cy in zip(columns, data, cy):
ax.plot(
shift_prevs,
shifts,
label=method,
color=_cy["color"],
linestyle="-",
marker="o",
markersize=3,
zorder=2,
)
if counts is not None:
_col_idx = np.where(columns == method)[0]
count = counts[_col_idx].flatten()
for prev, shift, cnt in zip(shift_prevs, shifts, count):
label = f"{cnt}"
plt.annotate(
label,
(prev, shift),
textcoords="offset points",
xytext=(0, 10),
ha="center",
color=_cy["color"],
fontsize=12.0,
)
ax.set(xlabel="dataset shift", ylabel=metric, title=title)
if legend:
ax.legend(loc="center left", bbox_to_anchor=(1, 0.5))
if return_fig:
return fig
output_path = base_path / f"{title}.png"
fig.savefig(output_path, bbox_inches="tight")
return output_path

201
quacc/plot/plotly.py Normal file
View File

@ -0,0 +1,201 @@
from collections import defaultdict
from pathlib import Path
import numpy as np
import plotly
import plotly.graph_objects as go
from quacc.plot.base import BasePlot
class PlotlyPlot(BasePlot):
__themes = defaultdict(
lambda: {
"template": "seaborn",
}
)
__themes = __themes | {
"dark": {
"template": "plotly_dark",
},
}
def __init__(self, theme=None):
self.theme = PlotlyPlot.__themes[theme]
def hex_to_rgb(self, hex: str, t: float | None = None):
hex = hex.lstrip("#")
rgb = [int(hex[i : i + 2], 16) for i in [0, 2, 4]]
if t is not None:
rgb.append(t)
return f"{'rgb' if t is None else 'rgba'}{str(tuple(rgb))}"
def get_colors(self, num):
match num:
case v if v > 10:
__colors = plotly.colors.qualitative.Light24
case _:
__colors = plotly.colors.qualitative.Plotly
def __generator(cs):
while True:
for c in cs:
yield c
return __generator(__colors)
def update_layout(self, fig, title, x_label, y_label):
fig.update_layout(
title=title,
xaxis_title=x_label,
yaxis_title=y_label,
template=self.theme["template"],
)
def save_fig(self, fig, base_path, title) -> Path:
return None
def plot_delta(
self,
base_prevs,
columns,
data,
*,
stdevs=None,
pos_class=1,
title="default",
x_label="prevs.",
y_label="error",
legend=True,
) -> go.Figure:
fig = go.Figure()
x = base_prevs[:, pos_class]
line_colors = self.get_colors(len(columns))
for name, delta in zip(columns, data):
color = next(line_colors)
_line = [
go.Scatter(
x=x,
y=delta,
mode="lines+markers",
name=name,
line=dict(color=self.hex_to_rgb(color)),
hovertemplate="prev.: %{x}<br>error: %{y:,.4f}",
)
]
_error = []
if stdevs is not None:
_col_idx = np.where(columns == name)[0]
stdev = stdevs[_col_idx].flatten()
_error = [
go.Scatter(
x=np.concatenate([x, x[::-1]]),
y=np.concatenate([delta - stdev, (delta + stdev)[::-1]]),
name=int(_col_idx[0]),
fill="toself",
fillcolor=self.hex_to_rgb(color, t=0.2),
line=dict(color="rgba(255, 255, 255, 0)"),
hoverinfo="skip",
showlegend=False,
)
]
fig.add_traces(_line + _error)
self.update_layout(fig, title, x_label, y_label)
return fig
def plot_diagonal(
self,
reference,
columns,
data,
*,
pos_class=1,
title="default",
x_label="true",
y_label="estim.",
legend=True,
) -> go.Figure:
fig = go.Figure()
x = reference
line_colors = self.get_colors(len(columns))
_edges = (np.min([np.min(x), np.min(data)]), np.max([np.max(x), np.max(data)]))
_lims = np.array([[_edges[0], _edges[1]], [_edges[0], _edges[1]]])
for name, val in zip(columns, data):
color = next(line_colors)
slope, interc = np.polyfit(x, val, 1)
y_lr = np.array([slope * _x + interc for _x in _lims[0]])
fig.add_traces(
[
go.Scatter(
x=x,
y=val,
customdata=np.stack((val - x,), axis=-1),
mode="markers",
name=name,
line=dict(color=self.hex_to_rgb(color, t=0.5)),
hovertemplate="true acc: %{x:,.4f}<br>estim. acc: %{y:,.4f}<br>acc err.: %{customdata[0]:,.4f}",
),
go.Scatter(
x=_lims[0],
y=y_lr,
mode="lines",
name=name,
line=dict(color=self.hex_to_rgb(color), width=3),
showlegend=False,
),
]
)
fig.add_trace(
go.Scatter(
x=_lims[0],
y=_lims[1],
mode="lines",
name="reference",
showlegend=False,
line=dict(color=self.hex_to_rgb("#000000"), dash="dash"),
)
)
self.update_layout(fig, title, x_label, y_label)
fig.update_layout(yaxis_scaleanchor="x", yaxis_scaleratio=1.0)
return fig
def plot_shift(
self,
shift_prevs,
columns,
data,
*,
counts=None,
pos_class=1,
title="default",
x_label="true",
y_label="estim.",
legend=True,
) -> go.Figure:
fig = go.Figure()
x = shift_prevs[:, pos_class]
line_colors = self.get_colors(len(columns))
for name, delta in zip(columns, data):
col_idx = (columns == name).nonzero()[0][0]
color = next(line_colors)
fig.add_trace(
go.Scatter(
x=x,
y=delta,
customdata=np.stack((counts[col_idx],), axis=-1),
mode="lines+markers",
name=name,
line=dict(color=self.hex_to_rgb(color)),
hovertemplate="shift: %{x}<br>error: %{y}"
+ "<br>count: %{customdata[0]}"
if counts is not None
else "",
)
)
self.update_layout(fig, title, x_label, y_label)
return fig