imports fixed, added control variables

This commit is contained in:
Lorenzo Volpi 2024-04-08 17:56:41 +02:00
parent 5bb66b85c8
commit b17ae5e45d
1 changed files with 86 additions and 72 deletions

View File

@ -15,6 +15,7 @@ from quacc.experiments.generators import (
gen_multi_datasets,
gen_tweet_datasets,
)
from quacc.experiments.plotting import save_plot_delta, save_plot_diagonal
from quacc.experiments.report import Report, TestReport
from quacc.experiments.util import (
fit_method,
@ -27,6 +28,8 @@ from quacc.experiments.util import (
PROBLEM = "binary"
ORACLE = False
basedir = PROBLEM + ("-oracle" if ORACLE else "")
EXPERIMENT = True
PLOTTING = True
if PROBLEM == "binary":
@ -43,89 +46,100 @@ elif PROBLEM == "tweet":
gen_datasets = gen_tweet_datasets
for (cls_name, h), (dataset_name, (L, V, U)) in itertools.product(
gen_classifiers(), gen_datasets()
):
print(f"training {cls_name} in {dataset_name}")
h.fit(*L.Xy)
if EXPERIMENT:
for (cls_name, h), (dataset_name, (L, V, U)) in itertools.product(
gen_classifiers(), gen_datasets()
):
print(f"training {cls_name} in {dataset_name}")
h.fit(*L.Xy)
# test generation protocol
test_prot = UPP(
U, repeats=NUM_TEST, return_type="labelled_collection", random_state=0
)
# test generation protocol
test_prot = UPP(
U, repeats=NUM_TEST, return_type="labelled_collection", random_state=0
)
# compute some stats of the dataset
save_dataset_stats(f"dataset_stats/{dataset_name}.json", test_prot, L, V)
# compute some stats of the dataset
save_dataset_stats(f"dataset_stats/{dataset_name}.json", test_prot, L, V)
# precompute the actual accuracy values
true_accs = {}
for acc_name, acc_fn in gen_acc_measure():
true_accs[acc_name] = [true_acc(h, acc_fn, Ui) for Ui in test_prot()]
# precompute the actual accuracy values
true_accs = {}
for acc_name, acc_fn in gen_acc_measure():
true_accs[acc_name] = [true_acc(h, acc_fn, Ui) for Ui in test_prot()]
print("CAP methods")
# instances of ClassifierAccuracyPrediction are bound to the evaluation measure, so they
# must be nested in the acc-for
for acc_name, acc_fn in gen_acc_measure():
print(f"\tfor measure {acc_name}")
for method_name, method in gen_CAP(h, acc_fn, with_oracle=ORACLE):
report = TestReport(basedir, cls_name, acc_name, dataset_name, method_name)
if os.path.exists(report.path):
print(f"\t\t{method_name}-{acc_name} exists, skipping")
print("CAP methods")
# instances of ClassifierAccuracyPrediction are bound to the evaluation measure, so they
# must be nested in the acc-for
for acc_name, acc_fn in gen_acc_measure():
print(f"\tfor measure {acc_name}")
for method_name, method in gen_CAP(h, acc_fn, with_oracle=ORACLE):
report = TestReport(
basedir=basedir,
cls_name=cls_name,
acc_name=acc_name,
dataset_name=dataset_name,
method_name=method_name,
train_prev=L.prevalence().tolist(),
val_prev=V.prevalence().tolist(),
)
if os.path.exists(report.path):
print(f"\t\t{method_name}-{acc_name} exists, skipping")
continue
print(f"\t\t{method_name} computing...")
method, t_train = fit_method(method, V)
estim_accs, t_test_ave = predictionsCAP(method, test_prot, ORACLE)
test_prevs = prevs_from_prot(test_prot)
report.add_result(
test_prevs=test_prevs,
true_accs=true_accs[acc_name],
estim_accs=estim_accs,
t_train=t_train,
t_test_ave=t_test_ave,
).save_json(basedir)
print("\nCAP_cont_table methods")
# instances of CAPContingencyTable instead are generic, and the evaluation measure can
# be nested to the predictions to speed up things
for method_name, method in gen_CAP_cont_table(h):
if not any_missing(basedir, cls_name, dataset_name, method_name):
print(
f"\t\tmethod {method_name} has all results already computed. Skipping."
)
continue
print(f"\t\t{method_name} computing...")
print(f"\t\tmethod {method_name} computing...")
method, t_train = fit_method(method, V)
estim_accs, t_test_ave = predictionsCAP(method, test_prot, ORACLE)
test_prevs = prevs_from_prot(test_prot)
report.add_result(
test_prevs=test_prevs,
true_accs=true_accs[acc_name],
estim_accs=estim_accs,
t_train=t_train,
t_test_ave=t_test_ave,
).save_json(basedir)
print("\nCAP_cont_table methods")
# instances of CAPContingencyTable instead are generic, and the evaluation measure can
# be nested to the predictions to speed up things
for method_name, method in gen_CAP_cont_table(h):
if not any_missing(basedir, cls_name, dataset_name, method_name):
print(
f"\t\tmethod {method_name} has all results already computed. Skipping."
estim_accs_dict, t_test_ave = predictionsCAPcont_table(
method, test_prot, gen_acc_measure, ORACLE
)
continue
for acc_name, estim_accs in estim_accs_dict.items():
report = TestReport(
basedir, cls_name, acc_name, dataset_name, method_name
)
test_prevs = prevs_from_prot(test_prot)
report.add_result(
test_prevs=test_prevs,
true_accs=true_accs[acc_name],
estim_accs=estim_accs,
t_train=t_train,
t_test_ave=t_test_ave,
).save_json(basedir)
print(f"\t\tmethod {method_name} computing...")
method, t_train = fit_method(method, V)
estim_accs_dict, t_test_ave = predictionsCAPcont_table(
method, test_prot, gen_acc_measure, ORACLE
)
for acc_name, estim_accs in estim_accs_dict.items():
report = TestReport(basedir, cls_name, acc_name, dataset_name, method_name)
test_prevs = prevs_from_prot(test_prot)
report.add_result(
test_prevs=test_prevs,
true_accs=true_accs[acc_name],
estim_accs=estim_accs,
t_train=t_train,
t_test_ave=t_test_ave,
).save_json(basedir)
print()
print()
# generate plots
print("generating plots")
rep = Report.load_results(basedir)
for rs in rep.results:
print(rs.path)
# for (cls_name, _), (acc_name, _) in itertools.product(
# gen_classifiers(), gen_acc_measure()
# ):
# plot_diagonal(basedir, cls_name, acc_name)
# for dataset_name, _ in gen_datasets(only_names=True):
# plot_diagonal(basedir, cls_name, acc_name, dataset_name=dataset_name)
if PLOTTING:
for (cls_name, _), (acc_name, _) in itertools.product(
gen_classifiers(), gen_acc_measure()
):
save_plot_diagonal(basedir, cls_name, acc_name)
for dataset_name, _ in gen_datasets(only_names=True):
save_plot_diagonal(basedir, cls_name, acc_name, dataset_name=dataset_name)
save_plot_delta(basedir, cls_name, acc_name, dataset_name=dataset_name)
save_plot_delta(
basedir, cls_name, acc_name, dataset_name=dataset_name, stdev=True
)
# print("generating tables")
# gen_tables(basedir, datasets=[d for d, _ in gen_datasets(only_names=True)])