switched implementation to pool.imap
This commit is contained in:
parent
72ff1334ac
commit
afceb6ee1c
|
@ -12,7 +12,7 @@ from quacc.dataset import Dataset
|
|||
from quacc.environment import env
|
||||
from quacc.evaluation import baseline, method
|
||||
from quacc.evaluation.report import CompReport, DatasetReport
|
||||
from quacc.evaluation.worker import estimate_worker
|
||||
from quacc.evaluation.worker import WorkerArgs, estimate_worker
|
||||
from quacc.logger import Logger
|
||||
|
||||
pd.set_option("display.float_format", "{:.4f}".format)
|
||||
|
@ -91,45 +91,42 @@ def evaluate_comparison(dataset: Dataset, estimators=None) -> DatasetReport:
|
|||
log.info(
|
||||
f"Dataset sample {d.train_prev[1]:.2f} of dataset {dataset.name} started"
|
||||
)
|
||||
tstart = time.time()
|
||||
tasks = [
|
||||
(estim, d.train, d.validation, d.test) for estim in CE.func[estimators]
|
||||
WorkerArgs(
|
||||
_estimate=estim,
|
||||
train=d.train,
|
||||
validation=d.validation,
|
||||
test=d.test,
|
||||
_env=env,
|
||||
q=Logger.queue(),
|
||||
)
|
||||
for estim in CE.func[estimators]
|
||||
]
|
||||
results = [
|
||||
pool.apply_async(estimate_worker, t, {"_env": env, "q": Logger.queue()})
|
||||
for t in tasks
|
||||
]
|
||||
|
||||
results_got = []
|
||||
for _r in results:
|
||||
try:
|
||||
r = _r.get()
|
||||
if r["result"] is not None:
|
||||
results_got.append(r)
|
||||
except Exception as e:
|
||||
log.warning(
|
||||
f"Dataset sample {d.train_prev[1]:.2f} of dataset {dataset.name} failed. Exception: {e}"
|
||||
)
|
||||
|
||||
tend = time.time()
|
||||
times = {r["name"]: r["time"] for r in results_got}
|
||||
times["tot"] = tend - tstart
|
||||
log.info(
|
||||
f"Dataset sample {d.train_prev[1]:.2f} of dataset {dataset.name} finished [took {times['tot']:.4f}s]"
|
||||
)
|
||||
try:
|
||||
tstart = time.time()
|
||||
results = [
|
||||
r for r in pool.imap(estimate_worker, tasks) if r is not None
|
||||
]
|
||||
|
||||
g_time = time.time() - tstart
|
||||
log.info(
|
||||
f"Dataset sample {d.train_prev[1]:.2f} of dataset {dataset.name} finished "
|
||||
f"[took {g_time:.4f}s]"
|
||||
)
|
||||
|
||||
cr = CompReport(
|
||||
[r["result"] for r in results_got],
|
||||
results,
|
||||
name=dataset.name,
|
||||
train_prev=d.train_prev,
|
||||
valid_prev=d.validation_prev,
|
||||
times=times,
|
||||
g_time=g_time,
|
||||
)
|
||||
dr += cr
|
||||
|
||||
except Exception as e:
|
||||
log.warning(
|
||||
f"Dataset sample {d.train_prev[1]:.2f} of dataset {dataset.name} failed. Exception: {e}"
|
||||
f"Dataset sample {d.train_prev[1]:.2f} of dataset {dataset.name} failed. "
|
||||
f"Exception: {e}"
|
||||
)
|
||||
traceback(e)
|
||||
cr = None
|
||||
dr += cr
|
||||
return dr
|
||||
|
|
|
@ -1,44 +1,52 @@
|
|||
import time
|
||||
from dataclasses import dataclass
|
||||
from multiprocessing import Queue
|
||||
from traceback import print_exception as traceback
|
||||
|
||||
import quapy as qp
|
||||
from quapy.data import LabelledCollection
|
||||
from quapy.protocol import APP
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
|
||||
from quacc.environment import env, environ
|
||||
from quacc.logger import SubLogger
|
||||
|
||||
|
||||
def estimate_worker(_estimate, train, validation, test, _env=None, q=None):
|
||||
qp.environ["SAMPLE_SIZE"] = _env.SAMPLE_SIZE
|
||||
SubLogger.setup(q)
|
||||
log = SubLogger.logger()
|
||||
@dataclass(frozen=True)
|
||||
class WorkerArgs:
|
||||
_estimate: callable
|
||||
train: LabelledCollection
|
||||
validation: LabelledCollection
|
||||
test: LabelledCollection
|
||||
_env: environ
|
||||
q: Queue
|
||||
|
||||
model = LogisticRegression()
|
||||
|
||||
model.fit(*train.Xy)
|
||||
protocol = APP(
|
||||
test,
|
||||
n_prevalences=_env.PROTOCOL_N_PREVS,
|
||||
repeats=_env.PROTOCOL_REPEATS,
|
||||
return_type="labelled_collection",
|
||||
)
|
||||
start = time.time()
|
||||
try:
|
||||
result = _estimate(model, validation, protocol)
|
||||
except Exception as e:
|
||||
log.warning(f"Method {_estimate.__name__} failed. Exception: {e}")
|
||||
traceback(e)
|
||||
return {
|
||||
"name": _estimate.__name__,
|
||||
"result": None,
|
||||
"time": 0,
|
||||
}
|
||||
def estimate_worker(args: WorkerArgs):
|
||||
with env.load(args._env):
|
||||
qp.environ["SAMPLE_SIZE"] = env.SAMPLE_SIZE
|
||||
SubLogger.setup(args.q)
|
||||
log = SubLogger.logger()
|
||||
|
||||
end = time.time()
|
||||
log.info(f"{_estimate.__name__} finished [took {end-start:.4f}s]")
|
||||
model = LogisticRegression()
|
||||
|
||||
return {
|
||||
"name": _estimate.__name__,
|
||||
"result": result,
|
||||
"time": end - start,
|
||||
}
|
||||
model.fit(*args.train.Xy)
|
||||
protocol = APP(
|
||||
args.test,
|
||||
n_prevalences=env.PROTOCOL_N_PREVS,
|
||||
repeats=env.PROTOCOL_REPEATS,
|
||||
return_type="labelled_collection",
|
||||
random_state=env._R_SEED,
|
||||
)
|
||||
start = time.time()
|
||||
try:
|
||||
result = args._estimate(model, args.validation, protocol)
|
||||
except Exception as e:
|
||||
log.warning(f"Method {args._estimate.name} failed. Exception: {e}")
|
||||
traceback(e)
|
||||
return None
|
||||
|
||||
result.time = time.time() - start
|
||||
log.info(f"{args._estimate.name} finished [took {result.time:.4f}s]")
|
||||
|
||||
return result
|
||||
|
|
Loading…
Reference in New Issue