From af0f1c7085d91c0070cf8c9a292e1e76ef7f97cd Mon Sep 17 00:00:00 2001 From: Lorenzo Volpi Date: Fri, 5 Apr 2024 17:22:59 +0200 Subject: [PATCH] generators updated, cleaning --- quacc/experiments/generators.py | 6 +++--- test_imdb_max_shift.py | 16 ---------------- test_postprocess.py | 9 --------- 3 files changed, 3 insertions(+), 28 deletions(-) delete mode 100644 test_imdb_max_shift.py delete mode 100644 test_postprocess.py diff --git a/quacc/experiments/generators.py b/quacc/experiments/generators.py index 50e5cc9..d29762b 100644 --- a/quacc/experiments/generators.py +++ b/quacc/experiments/generators.py @@ -67,9 +67,9 @@ def gen_bin_datasets( "imdb", ] _RCV1 = [ - # "CCAT", - # "GCAT", - # "MCAT", + "CCAT", + "GCAT", + "MCAT", ] for dn in _IMDB: dval = None if only_names else DP.imdb() diff --git a/test_imdb_max_shift.py b/test_imdb_max_shift.py deleted file mode 100644 index 469ca91..0000000 --- a/test_imdb_max_shift.py +++ /dev/null @@ -1,16 +0,0 @@ -import pandas as pd - -from quacc.legacy.evaluation.report import DatasetReport - -dr = DatasetReport.unpickle("output/main/imdb/imdb.pickle") - -_data = dr.data( - metric="acc", estimators=["bin_sld_lr_mc", "bin_sld_lr_ne", "bin_sld_lr_c"] -) -d1 = _data.loc[((0.9, 0.1), (1.0, 0.0), slice(None)), :] -d2 = _data.loc[((0.1, 0.9), (0.0, 1.0), slice(None)), :] -dd = pd.concat([d1, d2], axis=0) - -print(d1.to_numpy(), "\n", d1.mean(), "\n") -print(d2.to_numpy(), "\n", d2.mean(), "\n") -print(dd.to_numpy(), "\n", dd.mean(), "\n") diff --git a/test_postprocess.py b/test_postprocess.py deleted file mode 100644 index e54f037..0000000 --- a/test_postprocess.py +++ /dev/null @@ -1,9 +0,0 @@ -from quacc.legacy.evaluation.report import DatasetReport - -dr = DatasetReport.unpickle("output/main/imdb/imdb.pickle") -_estimators = ["sld_lr_gs", "bin_sld_lr_gs", "mul_sld_lr_gs", "m3w_sld_lr_gs"] -_data = dr.data(metric="acc", estimators=_estimators) -for idx, cr in zip(_data.index.unique(0), dr.crs[::-1]): - print(cr.train_prev) - print({k: v for k, v in cr.fit_scores.items() if k in _estimators}) - print(_data.loc[(idx, slice(None), slice(None)), :])