main_test updated

This commit is contained in:
Lorenzo Volpi 2023-11-22 19:25:12 +01:00
parent 0bee49ccc3
commit a00224015c
1 changed files with 89 additions and 92 deletions

View File

@ -1,49 +1,95 @@
from copy import deepcopy
from time import time
import numpy as np
from quapy.method.aggregative import SLD
from quapy.protocol import APP, UPP
from sklearn.linear_model import LogisticRegression
import scipy.sparse as sp
from quapy.protocol import APP
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.metrics import accuracy_score
import quacc as qc
from baselines.mandoline import estimate_performance
from quacc.dataset import Dataset
from quacc.error import acc
from quacc.evaluation.baseline import ref
from quacc.evaluation.method import mulmc_sld
from quacc.evaluation.report import CompReport, EvaluationReport
from quacc.method.base import MCAE, BinaryQuantifierAccuracyEstimator
from quacc.method.model_selection import GridSearchAE
def test_gs():
def test_lr():
d = Dataset(name="rcv1", target="CCAT", n_prevalences=1).get_raw()
classifier = LogisticRegression()
classifier.fit(*d.train.Xy)
quantifier = SLD(LogisticRegression())
# estimator = MultiClassAccuracyEstimator(classifier, quantifier)
estimator = BinaryQuantifierAccuracyEstimator(classifier, quantifier)
val, _ = d.validation.split_stratified(0.5, random_state=0)
val_X, val_y = val.X, val.y
val_probs = classifier.predict_proba(val_X)
v_train, v_val = d.validation.split_stratified(0.6, random_state=0)
gs_protocol = UPP(v_val, sample_size=1000, repeats=100)
gs_estimator = GridSearchAE(
model=deepcopy(estimator),
param_grid={
"q__classifier__C": np.logspace(-3, 3, 7),
"q__classifier__class_weight": [None, "balanced"],
"q__recalib": [None, "bcts", "ts"],
},
refit=False,
protocol=gs_protocol,
verbose=True,
).fit(v_train)
reg_X = sp.hstack([val_X, val_probs])
reg_y = val_probs[np.arange(val_probs.shape[0]), val_y]
reg = LinearRegression()
reg.fit(reg_X, reg_y)
estimator.fit(d.validation)
_test_num = 10000
test_X = d.test.X[:_test_num, :]
test_probs = classifier.predict_proba(test_X)
test_reg_X = sp.hstack([test_X, test_probs])
reg_pred = reg.predict(test_reg_X)
def threshold(pred):
# return np.mean(
# (reg.predict(test_reg_X) >= pred)
# == (
# test_probs[np.arange(_test_num), d.test.y[:_test_num]] == np.max(test_probs, axis=1)
# )
# )
return np.mean(
(reg.predict(test_reg_X) >= pred)
== (np.argmax(test_probs, axis=1) == d.test.y[:_test_num])
)
max_p, max_acc = 0, 0
for p in reg_pred:
acc = threshold(p)
if acc > max_acc:
max_acc = acc
max_p = p
print(f"{max_p = }, {max_acc = }")
reg_pred = reg_pred - max_p + 0.5
print(reg_pred)
print(np.mean(reg_pred >= 0.5))
print(np.mean(np.argmax(test_probs, axis=1) == d.test.y[:_test_num]))
def entropy(probas):
return -np.sum(np.multiply(probas, np.log(probas + 1e-20)), axis=1)
def get_slices(probas):
ln, ncl = probas.shape
preds = np.argmax(probas, axis=1)
pred_slices = np.full((ln, ncl), fill_value=-1, dtype="<i8")
pred_slices[np.arange(ln), preds] = 1
ent = entropy(probas)
n_bins = 10
range_top = entropy(np.array([np.ones(ncl) / ncl]))[0]
bins = np.linspace(0, range_top, n_bins + 1)
bin_map = np.digitize(ent, bins=bins, right=True) - 1
ent_slices = np.full((ln, n_bins), fill_value=-1, dtype="<i8")
ent_slices[np.arange(ln), bin_map] = 1
return np.concatenate([pred_slices, ent_slices], axis=1)
def test_mandoline():
d = Dataset(name="cifar10", target="dog", n_prevalences=1).get_raw()
tstart = time()
erb, ergs = EvaluationReport("base"), EvaluationReport("gs")
classifier = LogisticRegression()
classifier.fit(*d.train.Xy)
val_probs = classifier.predict_proba(d.validation.X)
val_preds = np.argmax(val_probs, axis=1)
D_val = get_slices(val_probs)
emprical_mat_list_val = (1.0 * (val_preds == d.validation.y))[:, np.newaxis]
protocol = APP(
d.test,
sample_size=1000,
@ -51,68 +97,19 @@ def test_gs():
repeats=100,
return_type="labelled_collection",
)
for sample in protocol():
e_sample = gs_estimator.extend(sample)
estim_prev_b = estimator.estimate(e_sample.eX)
estim_prev_gs = gs_estimator.estimate(e_sample.eX)
erb.append_row(
sample.prevalence(),
acc=abs(acc(e_sample.prevalence()) - acc(estim_prev_b)),
)
ergs.append_row(
sample.prevalence(),
acc=abs(acc(e_sample.prevalence()) - acc(estim_prev_gs)),
)
cr = CompReport(
[erb, ergs],
"test",
train_prev=d.train_prev,
valid_prev=d.validation_prev,
)
print(cr.table())
print(f"[took {time() - tstart:.3f}s]")
def test_mc():
d = Dataset(name="rcv1", target="CCAT", prevs=[0.9]).get()[0]
classifier = LogisticRegression().fit(*d.train.Xy)
protocol = APP(
d.test,
sample_size=1000,
repeats=100,
n_prevalences=21,
return_type="labelled_collection",
)
ref_er = ref(classifier, d.validation, protocol)
mulmc_er = mulmc_sld(classifier, d.validation, protocol)
cr = CompReport(
[mulmc_er, ref_er],
name="test_mc",
train_prev=d.train_prev,
valid_prev=d.validation_prev,
)
with open("test_mc.md", "w") as f:
f.write(cr.data().to_markdown())
def test_et():
d = Dataset(name="imdb", prevs=[0.5]).get()[0]
classifier = LogisticRegression().fit(*d.train.Xy)
estimator = MCAE(
classifier,
SLD(LogisticRegression(), exact_train_prev=False),
confidence="entropy",
).fit(d.validation)
e_test = estimator.extend(d.test)
ep = estimator.estimate(e_test.eX)
print(f"estim prev = {qc.error.acc(ep)}")
print(f"true prev {qc.error.acc(e_test.prevalence())}")
res = []
for test in protocol():
test_probs = classifier.predict_proba(test.X)
test_preds = np.argmax(test_probs, axis=1)
D_test = get_slices(test_probs)
wp = estimate_performance(D_val, D_test, None, emprical_mat_list_val)
score = wp.all_estimates[0].weighted[0]
res.append(abs(score - accuracy_score(test.y, test_preds)))
print(score)
res = np.array(res).reshape((21, 100))
print(res.mean(axis=1))
print(f"time: {time() - tstart}s")
if __name__ == "__main__":
test_et()
test_mandoline()