main_test updated
This commit is contained in:
parent
0bee49ccc3
commit
a00224015c
|
@ -1,49 +1,95 @@
|
|||
from copy import deepcopy
|
||||
from time import time
|
||||
|
||||
import numpy as np
|
||||
from quapy.method.aggregative import SLD
|
||||
from quapy.protocol import APP, UPP
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
import scipy.sparse as sp
|
||||
from quapy.protocol import APP
|
||||
from sklearn.linear_model import LinearRegression, LogisticRegression
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
import quacc as qc
|
||||
from baselines.mandoline import estimate_performance
|
||||
from quacc.dataset import Dataset
|
||||
from quacc.error import acc
|
||||
from quacc.evaluation.baseline import ref
|
||||
from quacc.evaluation.method import mulmc_sld
|
||||
from quacc.evaluation.report import CompReport, EvaluationReport
|
||||
from quacc.method.base import MCAE, BinaryQuantifierAccuracyEstimator
|
||||
from quacc.method.model_selection import GridSearchAE
|
||||
|
||||
|
||||
def test_gs():
|
||||
def test_lr():
|
||||
d = Dataset(name="rcv1", target="CCAT", n_prevalences=1).get_raw()
|
||||
|
||||
classifier = LogisticRegression()
|
||||
classifier.fit(*d.train.Xy)
|
||||
|
||||
quantifier = SLD(LogisticRegression())
|
||||
# estimator = MultiClassAccuracyEstimator(classifier, quantifier)
|
||||
estimator = BinaryQuantifierAccuracyEstimator(classifier, quantifier)
|
||||
val, _ = d.validation.split_stratified(0.5, random_state=0)
|
||||
val_X, val_y = val.X, val.y
|
||||
val_probs = classifier.predict_proba(val_X)
|
||||
|
||||
v_train, v_val = d.validation.split_stratified(0.6, random_state=0)
|
||||
gs_protocol = UPP(v_val, sample_size=1000, repeats=100)
|
||||
gs_estimator = GridSearchAE(
|
||||
model=deepcopy(estimator),
|
||||
param_grid={
|
||||
"q__classifier__C": np.logspace(-3, 3, 7),
|
||||
"q__classifier__class_weight": [None, "balanced"],
|
||||
"q__recalib": [None, "bcts", "ts"],
|
||||
},
|
||||
refit=False,
|
||||
protocol=gs_protocol,
|
||||
verbose=True,
|
||||
).fit(v_train)
|
||||
reg_X = sp.hstack([val_X, val_probs])
|
||||
reg_y = val_probs[np.arange(val_probs.shape[0]), val_y]
|
||||
reg = LinearRegression()
|
||||
reg.fit(reg_X, reg_y)
|
||||
|
||||
estimator.fit(d.validation)
|
||||
_test_num = 10000
|
||||
test_X = d.test.X[:_test_num, :]
|
||||
test_probs = classifier.predict_proba(test_X)
|
||||
test_reg_X = sp.hstack([test_X, test_probs])
|
||||
reg_pred = reg.predict(test_reg_X)
|
||||
|
||||
def threshold(pred):
|
||||
# return np.mean(
|
||||
# (reg.predict(test_reg_X) >= pred)
|
||||
# == (
|
||||
# test_probs[np.arange(_test_num), d.test.y[:_test_num]] == np.max(test_probs, axis=1)
|
||||
# )
|
||||
# )
|
||||
return np.mean(
|
||||
(reg.predict(test_reg_X) >= pred)
|
||||
== (np.argmax(test_probs, axis=1) == d.test.y[:_test_num])
|
||||
)
|
||||
|
||||
max_p, max_acc = 0, 0
|
||||
for p in reg_pred:
|
||||
acc = threshold(p)
|
||||
if acc > max_acc:
|
||||
max_acc = acc
|
||||
max_p = p
|
||||
|
||||
print(f"{max_p = }, {max_acc = }")
|
||||
reg_pred = reg_pred - max_p + 0.5
|
||||
print(reg_pred)
|
||||
print(np.mean(reg_pred >= 0.5))
|
||||
print(np.mean(np.argmax(test_probs, axis=1) == d.test.y[:_test_num]))
|
||||
|
||||
|
||||
def entropy(probas):
|
||||
return -np.sum(np.multiply(probas, np.log(probas + 1e-20)), axis=1)
|
||||
|
||||
|
||||
def get_slices(probas):
|
||||
ln, ncl = probas.shape
|
||||
preds = np.argmax(probas, axis=1)
|
||||
pred_slices = np.full((ln, ncl), fill_value=-1, dtype="<i8")
|
||||
pred_slices[np.arange(ln), preds] = 1
|
||||
|
||||
ent = entropy(probas)
|
||||
n_bins = 10
|
||||
range_top = entropy(np.array([np.ones(ncl) / ncl]))[0]
|
||||
bins = np.linspace(0, range_top, n_bins + 1)
|
||||
bin_map = np.digitize(ent, bins=bins, right=True) - 1
|
||||
ent_slices = np.full((ln, n_bins), fill_value=-1, dtype="<i8")
|
||||
ent_slices[np.arange(ln), bin_map] = 1
|
||||
|
||||
return np.concatenate([pred_slices, ent_slices], axis=1)
|
||||
|
||||
|
||||
def test_mandoline():
|
||||
d = Dataset(name="cifar10", target="dog", n_prevalences=1).get_raw()
|
||||
|
||||
tstart = time()
|
||||
erb, ergs = EvaluationReport("base"), EvaluationReport("gs")
|
||||
classifier = LogisticRegression()
|
||||
classifier.fit(*d.train.Xy)
|
||||
|
||||
val_probs = classifier.predict_proba(d.validation.X)
|
||||
val_preds = np.argmax(val_probs, axis=1)
|
||||
D_val = get_slices(val_probs)
|
||||
emprical_mat_list_val = (1.0 * (val_preds == d.validation.y))[:, np.newaxis]
|
||||
|
||||
protocol = APP(
|
||||
d.test,
|
||||
sample_size=1000,
|
||||
|
@ -51,68 +97,19 @@ def test_gs():
|
|||
repeats=100,
|
||||
return_type="labelled_collection",
|
||||
)
|
||||
for sample in protocol():
|
||||
e_sample = gs_estimator.extend(sample)
|
||||
estim_prev_b = estimator.estimate(e_sample.eX)
|
||||
estim_prev_gs = gs_estimator.estimate(e_sample.eX)
|
||||
erb.append_row(
|
||||
sample.prevalence(),
|
||||
acc=abs(acc(e_sample.prevalence()) - acc(estim_prev_b)),
|
||||
)
|
||||
ergs.append_row(
|
||||
sample.prevalence(),
|
||||
acc=abs(acc(e_sample.prevalence()) - acc(estim_prev_gs)),
|
||||
)
|
||||
|
||||
cr = CompReport(
|
||||
[erb, ergs],
|
||||
"test",
|
||||
train_prev=d.train_prev,
|
||||
valid_prev=d.validation_prev,
|
||||
)
|
||||
|
||||
print(cr.table())
|
||||
print(f"[took {time() - tstart:.3f}s]")
|
||||
|
||||
|
||||
def test_mc():
|
||||
d = Dataset(name="rcv1", target="CCAT", prevs=[0.9]).get()[0]
|
||||
classifier = LogisticRegression().fit(*d.train.Xy)
|
||||
protocol = APP(
|
||||
d.test,
|
||||
sample_size=1000,
|
||||
repeats=100,
|
||||
n_prevalences=21,
|
||||
return_type="labelled_collection",
|
||||
)
|
||||
|
||||
ref_er = ref(classifier, d.validation, protocol)
|
||||
mulmc_er = mulmc_sld(classifier, d.validation, protocol)
|
||||
|
||||
cr = CompReport(
|
||||
[mulmc_er, ref_er],
|
||||
name="test_mc",
|
||||
train_prev=d.train_prev,
|
||||
valid_prev=d.validation_prev,
|
||||
)
|
||||
|
||||
with open("test_mc.md", "w") as f:
|
||||
f.write(cr.data().to_markdown())
|
||||
|
||||
|
||||
def test_et():
|
||||
d = Dataset(name="imdb", prevs=[0.5]).get()[0]
|
||||
classifier = LogisticRegression().fit(*d.train.Xy)
|
||||
estimator = MCAE(
|
||||
classifier,
|
||||
SLD(LogisticRegression(), exact_train_prev=False),
|
||||
confidence="entropy",
|
||||
).fit(d.validation)
|
||||
e_test = estimator.extend(d.test)
|
||||
ep = estimator.estimate(e_test.eX)
|
||||
print(f"estim prev = {qc.error.acc(ep)}")
|
||||
print(f"true prev {qc.error.acc(e_test.prevalence())}")
|
||||
res = []
|
||||
for test in protocol():
|
||||
test_probs = classifier.predict_proba(test.X)
|
||||
test_preds = np.argmax(test_probs, axis=1)
|
||||
D_test = get_slices(test_probs)
|
||||
wp = estimate_performance(D_val, D_test, None, emprical_mat_list_val)
|
||||
score = wp.all_estimates[0].weighted[0]
|
||||
res.append(abs(score - accuracy_score(test.y, test_preds)))
|
||||
print(score)
|
||||
res = np.array(res).reshape((21, 100))
|
||||
print(res.mean(axis=1))
|
||||
print(f"time: {time() - tstart}s")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_et()
|
||||
test_mandoline()
|
||||
|
|
Loading…
Reference in New Issue