gs params updated, methods added
This commit is contained in:
parent
4423221ba9
commit
81b92157a5
|
@ -17,7 +17,7 @@ _sld_param_grid = {
|
||||||
"q__classifier__C": np.logspace(-3, 3, 7),
|
"q__classifier__C": np.logspace(-3, 3, 7),
|
||||||
"q__classifier__class_weight": [None, "balanced"],
|
"q__classifier__class_weight": [None, "balanced"],
|
||||||
"q__recalib": [None, "bcts"],
|
"q__recalib": [None, "bcts"],
|
||||||
"confidence": [["max_conf", "entropy"]],
|
"confidence": [["max_conf"], ["entropy"], ["max_conf", "entropy"]],
|
||||||
}
|
}
|
||||||
_pacc_param_grid = {
|
_pacc_param_grid = {
|
||||||
"q__classifier__C": np.logspace(-3, 3, 7),
|
"q__classifier__C": np.logspace(-3, 3, 7),
|
||||||
|
@ -151,6 +151,20 @@ def mulmc_sld(c_model, validation, protocol) -> EvaluationReport:
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@method
|
||||||
|
def mul3wmc_sld(c_model, validation, protocol) -> EvaluationReport:
|
||||||
|
est = MCAE(
|
||||||
|
c_model,
|
||||||
|
SLD(LogisticRegression()),
|
||||||
|
confidence="max_conf",
|
||||||
|
collapse_false=True,
|
||||||
|
).fit(validation)
|
||||||
|
return evaluation_report(
|
||||||
|
estimator=est,
|
||||||
|
protocol=protocol,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@method
|
@method
|
||||||
def binne_sld(c_model, validation, protocol) -> EvaluationReport:
|
def binne_sld(c_model, validation, protocol) -> EvaluationReport:
|
||||||
est = BQAE(
|
est = BQAE(
|
||||||
|
@ -177,6 +191,20 @@ def mulne_sld(c_model, validation, protocol) -> EvaluationReport:
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@method
|
||||||
|
def mul3wne_sld(c_model, validation, protocol) -> EvaluationReport:
|
||||||
|
est = MCAE(
|
||||||
|
c_model,
|
||||||
|
SLD(LogisticRegression()),
|
||||||
|
confidence="entropy",
|
||||||
|
collapse_false=True,
|
||||||
|
).fit(validation)
|
||||||
|
return evaluation_report(
|
||||||
|
estimator=est,
|
||||||
|
protocol=protocol,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@method
|
@method
|
||||||
def bin_sld_gs(c_model, validation, protocol) -> EvaluationReport:
|
def bin_sld_gs(c_model, validation, protocol) -> EvaluationReport:
|
||||||
v_train, v_val = validation.split_stratified(0.6, random_state=0)
|
v_train, v_val = validation.split_stratified(0.6, random_state=0)
|
||||||
|
|
Loading…
Reference in New Issue