added kde implementation, switched to dataclass

This commit is contained in:
Lorenzo Volpi 2023-11-26 16:31:23 +01:00
parent d6736d194b
commit 58661e7f93
1 changed files with 83 additions and 49 deletions

View File

@ -1,26 +1,35 @@
from dataclasses import dataclass
from typing import List
import numpy as np
from quapy.method.aggregative import PACC, SLD
from quapy.method.aggregative import PACC, SLD, BaseQuantifier
from quapy.protocol import UPP, AbstractProtocol
from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
import quacc as qc
from quacc.evaluation.report import EvaluationReport
from quacc.method.base import BQAE, MCAE, BaseAccuracyEstimator
from quacc.method.model_selection import GridSearchAE
from ..method.base import BQAE, MCAE, BaseAccuracyEstimator
from quacc.quantification import KDEy
_param_grid = {
"sld": {
"q__classifier__C": np.logspace(-3, 3, 7),
"q__classifier__class_weight": [None, "balanced"],
"q__recalib": [None, "bcts"],
"confidence": [["isoft"], ["max_conf", "entropy"]],
"confidence": [None, ["isoft"], ["max_conf", "entropy"]],
},
"pacc": {
"q__classifier__C": np.logspace(-3, 3, 7),
"q__classifier__class_weight": [None, "balanced"],
"confidence": [["isoft"], ["max_conf", "entropy"]],
"confidence": [None, ["isoft"], ["max_conf", "entropy"]],
},
"kde": {
"q__classifier__C": np.logspace(-3, 3, 7),
"q__classifier__class_weight": [None, "balanced"],
"q__bandwidth": np.linspace(0.01, 0.2, 5),
"confidence": [None, ["isoft"]],
},
}
@ -56,38 +65,42 @@ def evaluation_report(
return report
@dataclass(frozen=True)
class EvaluationMethod:
def __init__(self, name, q, est_c, conf=None, cf=False):
self.name = name
self.__name__ = name
self.q = q
self.est_c = est_c
self.conf = conf
self.cf = cf
name: str
q: BaseQuantifier
est_n: str
conf: List[str] | str = None
cf: bool = False
def get_est(self, c_model):
match self.est_n:
case "mul":
return MCAE(
c_model,
self.q,
confidence=self.conf,
collapse_false=self.cf,
)
case "bin":
return BQAE(c_model, self.q, confidence=self.conf)
def __call__(self, c_model, validation, protocol) -> EvaluationReport:
est = self.est_c(
c_model,
self.q,
confidence=self.conf,
collapse_false=self.cf,
).fit(validation)
est = self.get_est(c_model).fit(validation)
return evaluation_report(
estimator=est, protocol=protocol, method_name=self.name
)
@dataclass(frozen=True)
class EvaluationMethodGridSearch(EvaluationMethod):
def __init__(self, name, q, est_c, cf=False, pg="sld"):
super().__init__(name, q, est_c, cf=cf)
self.pg = pg
pg: str = "sld"
def __call__(self, c_model, validation, protocol) -> EvaluationReport:
v_train, v_val = validation.split_stratified(0.6, random_state=0)
model = self.est_c(c_model, self.q, collapse_false=self.cf)
__grid = _param_grid.get(self.pg, {})
est = GridSearchAE(
model=model,
model=self.get_est(c_model),
param_grid=__grid,
refit=False,
protocol=UPP(v_val, repeats=100),
@ -108,6 +121,10 @@ def __sld_lr():
return SLD(LogisticRegression())
def __kde_lr():
return KDEy(LogisticRegression())
def __sld_lsvc():
return SLD(LinearSVC())
@ -119,37 +136,54 @@ def __pacc_lr():
# fmt: off
__methods_set = [
# base sld
M("bin_sld", __sld_lr(), BQAE ),
M("mul_sld", __sld_lr(), MCAE ),
M("m3w_sld", __sld_lr(), MCAE, cf=True),
M("bin_sld", __sld_lr(), "bin" ),
M("mul_sld", __sld_lr(), "mul" ),
M("m3w_sld", __sld_lr(), "mul", cf=True),
# max_conf + entropy sld
M("binc_sld", __sld_lr(), BQAE, conf=["max_conf", "entropy"] ),
M("mulc_sld", __sld_lr(), MCAE, conf=["max_conf", "entropy"] ),
M("m3wc_sld", __sld_lr(), MCAE, conf=["max_conf", "entropy"], cf=True),
M("binc_sld", __sld_lr(), "bin", conf=["max_conf", "entropy"] ),
M("mulc_sld", __sld_lr(), "mul", conf=["max_conf", "entropy"] ),
M("m3wc_sld", __sld_lr(), "mul", conf=["max_conf", "entropy"], cf=True),
# max_conf sld
M("binmc_sld", __sld_lr(), BQAE, conf="max_conf", ),
M("mulmc_sld", __sld_lr(), MCAE, conf="max_conf", ),
M("m3wmc_sld", __sld_lr(), MCAE, conf="max_conf", cf=True),
M("binmc_sld", __sld_lr(), "bin", conf="max_conf", ),
M("mulmc_sld", __sld_lr(), "mul", conf="max_conf", ),
M("m3wmc_sld", __sld_lr(), "mul", conf="max_conf", cf=True),
# entropy sld
M("binne_sld", __sld_lr(), BQAE, conf="entropy", ),
M("mulne_sld", __sld_lr(), MCAE, conf="entropy", ),
M("m3wne_sld", __sld_lr(), MCAE, conf="entropy", cf=True),
M("binne_sld", __sld_lr(), "bin", conf="entropy", ),
M("mulne_sld", __sld_lr(), "mul", conf="entropy", ),
M("m3wne_sld", __sld_lr(), "mul", conf="entropy", cf=True),
# inverse softmax sld
M("binis_sld", __sld_lr(), BQAE, conf="isoft", ),
M("mulis_sld", __sld_lr(), MCAE, conf="isoft", ),
M("m3wis_sld", __sld_lr(), MCAE, conf="isoft", cf=True),
# inverse softmax sld
M("binis_pacc", __pacc_lr(), BQAE, conf="isoft", ),
M("mulis_pacc", __pacc_lr(), MCAE, conf="isoft", ),
M("m3wis_pacc", __pacc_lr(), MCAE, conf="isoft", cf=True),
M("binis_sld", __sld_lr(), "bin", conf="isoft", ),
M("mulis_sld", __sld_lr(), "mul", conf="isoft", ),
M("m3wis_sld", __sld_lr(), "mul", conf="isoft", cf=True),
# gs sld
G("bin_sld_gs", __sld_lr(), BQAE, pg="sld" ),
G("mul_sld_gs", __sld_lr(), MCAE, pg="sld" ),
G("m3w_sld_gs", __sld_lr(), MCAE, pg="sld", cf=True),
# gs pacc
G("bin_pacc_gs", __pacc_lr(), BQAE, pg="pacc" ),
G("mul_pacc_gs", __pacc_lr(), MCAE, pg="pacc" ),
G("m3w_pacc_gs", __pacc_lr(), MCAE, pg="pacc", cf=True),
G("bin_sld_gs", __sld_lr(), "bin", pg="sld" ),
G("mul_sld_gs", __sld_lr(), "mul", pg="sld" ),
G("m3w_sld_gs", __sld_lr(), "mul", pg="sld", cf=True),
# base kde
M("bin_kde", __kde_lr(), "bin" ),
M("mul_kde", __kde_lr(), "mul" ),
M("m3w_kde", __kde_lr(), "mul", cf=True),
# max_conf + entropy kde
M("binc_kde", __kde_lr(), "bin", conf=["max_conf", "entropy"] ),
M("mulc_kde", __kde_lr(), "mul", conf=["max_conf", "entropy"] ),
M("m3wc_kde", __kde_lr(), "mul", conf=["max_conf", "entropy"], cf=True),
# max_conf kde
M("binmc_kde", __kde_lr(), "bin", conf="max_conf", ),
M("mulmc_kde", __kde_lr(), "mul", conf="max_conf", ),
M("m3wmc_kde", __kde_lr(), "mul", conf="max_conf", cf=True),
# entropy kde
M("binne_kde", __kde_lr(), "bin", conf="entropy", ),
M("mulne_kde", __kde_lr(), "mul", conf="entropy", ),
M("m3wne_kde", __kde_lr(), "mul", conf="entropy", cf=True),
# inverse softmax kde
M("binis_kde", __kde_lr(), "bin", conf="isoft", ),
M("mulis_kde", __kde_lr(), "mul", conf="isoft", ),
M("m3wis_kde", __kde_lr(), "mul", conf="isoft", cf=True),
# gs kde
G("bin_kde_gs", __kde_lr(), "bin", pg="kde", ),
G("mul_kde_gs", __kde_lr(), "mul", pg="kde", ),
G("m3w_kde_gs", __kde_lr(), "mul", pg="kde", cf=True),
]
# fmt: on