diff --git a/TODO.md b/TODO.md
index 154ff00..d559f56 100644
--- a/TODO.md
+++ b/TODO.md
@@ -61,3 +61,6 @@ multiclass:
- [x] aggiungere supporto a multiclass in dataset.py
- [x] aggiungere group_false in ExtensionPolicy
- [ ] modificare BQAE in modo che i quantifier si adattino alla casistica(binary/multi in base a group_false)
+
+fix:
+- [ ] make quantifiers predict 0 prevalence for classes for which we have 0 samples
diff --git a/conf.yaml b/conf.yaml
index 07bb450..d741d88 100644
--- a/conf.yaml
+++ b/conf.yaml
@@ -71,14 +71,14 @@ test_conf: &test_conf
main:
confs: &main_confs
- - DATASET_NAME: imdb
- other_confs:
- - DATASET_NAME: rcv1
- DATASET_TARGET: CCAT
- DATASET_NAME: rcv1
DATASET_TARGET: GCAT
- DATASET_NAME: rcv1
DATASET_TARGET: MCAT
+ other_confs:
+ - DATASET_NAME: imdb
+ - DATASET_NAME: rcv1
+ DATASET_TARGET: CCAT
sld_lr_conf: &sld_lr_conf
diff --git a/copy_res.sh b/copy_res.sh
index 8418a84..93d9dc5 100755
--- a/copy_res.sh
+++ b/copy_res.sh
@@ -1,9 +1,21 @@
#!/bin/bash
+DIRS=()
+# DIRS+=("kde_lr_gs")
+# DIRS+=("cc_lr")
+# DIRS+=("baselines")
+# DIRS+=("d_sld_rbf")
+DIRS+=("d_sld_lr")
+
+for dir in ${DIRS[@]}; do
+ scp -r andreaesuli@edge-nd1.isti.cnr.it:/home/andreaesuli/raid/lorenzo/output/${dir} ./output/
+ scp -r ./output/${dir} volpi@ilona.isti.cnr.it:/home/volpi/tesi/output/
+done
+
# scp -r andreaesuli@edge-nd1.isti.cnr.it:/home/andreaesuli/raid/lorenzo/output/kde_lr_gs ./output/
# scp -r andreaesuli@edge-nd1.isti.cnr.it:/home/andreaesuli/raid/lorenzo/output/cc_lr ./output/
-scp -r andreaesuli@edge-nd1.isti.cnr.it:/home/andreaesuli/raid/lorenzo/output/baselines ./output/
+# scp -r andreaesuli@edge-nd1.isti.cnr.it:/home/andreaesuli/raid/lorenzo/output/baselines ./output/
# scp -r ./output/kde_lr_gs volpi@ilona.isti.cnr.it:/home/volpi/tesi/output/
# scp -r ./output/cc_lr volpi@ilona.isti.cnr.it:/home/volpi/tesi/output/
-scp -r ./output/baselines volpi@ilona.isti.cnr.it:/home/volpi/tesi/output/
+# scp -r ./output/baselines volpi@ilona.isti.cnr.it:/home/volpi/tesi/output/
diff --git a/quacc/evaluation/baseline.py b/quacc/evaluation/baseline.py
index 7af7804..eb9aee5 100644
--- a/quacc/evaluation/baseline.py
+++ b/quacc/evaluation/baseline.py
@@ -68,6 +68,27 @@ def kfcv(
return report
+@baseline
+def ref(
+ c_model: BaseEstimator,
+ validation: LabelledCollection,
+ protocol: AbstractStochasticSeededProtocol,
+):
+ c_model_predict = getattr(c_model, "predict")
+ f1_average = "binary" if validation.n_classes == 2 else "macro"
+
+ report = EvaluationReport(name="ref")
+ for test in protocol():
+ test_preds = c_model_predict(test.X)
+ report.append_row(
+ test.prevalence(),
+ acc_score=metrics.accuracy_score(test.y, test_preds),
+ f1_score=metrics.f1_score(test.y, test_preds, average=f1_average),
+ )
+
+ return report
+
+
@baseline
def naive(
c_model: BaseEstimator,
@@ -101,22 +122,205 @@ def naive(
@baseline
-def ref(
+def mandoline(
c_model: BaseEstimator,
validation: LabelledCollection,
protocol: AbstractStochasticSeededProtocol,
-):
- c_model_predict = getattr(c_model, "predict")
- f1_average = "binary" if validation.n_classes == 2 else "macro"
+ predict_method="predict_proba",
+) -> EvaluationReport:
+ c_model_predict = getattr(c_model, predict_method)
- report = EvaluationReport(name="ref")
+ val_probs = c_model_predict(validation.X)
+ val_preds = np.argmax(val_probs, axis=1)
+ D_val = mandolib.get_slices(val_probs)
+ emprical_mat_list_val = (1.0 * (val_preds == validation.y))[:, np.newaxis]
+
+ report = EvaluationReport(name="mandoline")
for test in protocol():
- test_preds = c_model_predict(test.X)
- report.append_row(
- test.prevalence(),
- acc_score=metrics.accuracy_score(test.y, test_preds),
- f1_score=metrics.f1_score(test.y, test_preds, average=f1_average),
- )
+ test_probs = c_model_predict(test.X)
+ test_pred = np.argmax(test_probs, axis=1)
+ D_test = mandolib.get_slices(test_probs)
+ wp = mandolib.estimate_performance(D_val, D_test, None, emprical_mat_list_val)
+ score = wp.all_estimates[0].weighted[0]
+ meta_score = abs(score - metrics.accuracy_score(test.y, test_pred))
+ report.append_row(test.prevalence(), acc=meta_score, acc_score=score)
+
+ return report
+
+
+@baseline
+def rca(
+ c_model: BaseEstimator,
+ validation: LabelledCollection,
+ protocol: AbstractStochasticSeededProtocol,
+ predict_method="predict",
+):
+ """elsahar19"""
+ c_model_predict = getattr(c_model, predict_method)
+ f1_average = "binary" if validation.n_classes == 2 else "macro"
+ val1, val2 = validation.split_stratified(train_prop=0.5, random_state=env._R_SEED)
+ val1_pred1 = c_model_predict(val1.X)
+
+ val2_protocol = APP(
+ val2,
+ n_prevalences=21,
+ repeats=100,
+ return_type="labelled_collection",
+ )
+ val2_prot_preds = []
+ val2_rca = []
+ val2_prot_preds = []
+ val2_prot_y = []
+ for v2 in val2_protocol():
+ _preds = c_model_predict(v2.X)
+ try:
+ c_model2 = clone_fit(c_model, v2.X, _preds)
+ c_model2_predict = getattr(c_model2, predict_method)
+ val1_pred2 = c_model2_predict(val1.X)
+ rca_score = 1.0 - rcalib.get_score(val1_pred1, val1_pred2, val1.y)
+ val2_rca.append(rca_score)
+ val2_prot_preds.append(_preds)
+ val2_prot_y.append(v2.y)
+ except ValueError:
+ pass
+
+ val_targets_acc = np.array(
+ [
+ metrics.accuracy_score(v2_y, v2_preds)
+ for v2_y, v2_preds in zip(val2_prot_y, val2_prot_preds)
+ ]
+ )
+ reg_acc = LinearRegression().fit(np.array(val2_rca)[:, np.newaxis], val_targets_acc)
+ val_targets_f1 = np.array(
+ [
+ metrics.f1_score(v2_y, v2_preds, average=f1_average)
+ for v2_y, v2_preds in zip(val2_prot_y, val2_prot_preds)
+ ]
+ )
+ reg_f1 = LinearRegression().fit(np.array(val2_rca)[:, np.newaxis], val_targets_f1)
+
+ report = EvaluationReport(name="rca")
+ for test in protocol():
+ try:
+ test_preds = c_model_predict(test.X)
+ c_model2 = clone_fit(c_model, test.X, test_preds)
+ c_model2_predict = getattr(c_model2, predict_method)
+ val1_pred2 = c_model2_predict(val1.X)
+ rca_score = 1.0 - rcalib.get_score(val1_pred1, val1_pred2, val1.y)
+ acc_score = reg_acc.predict(np.array([[rca_score]]))[0]
+ f1_score = reg_f1.predict(np.array([[rca_score]]))[0]
+ meta_acc = abs(acc_score - metrics.accuracy_score(test.y, test_preds))
+ meta_f1 = abs(
+ f1_score - metrics.f1_score(test.y, test_preds, average=f1_average)
+ )
+ report.append_row(
+ test.prevalence(),
+ acc=meta_acc,
+ acc_score=acc_score,
+ f1=meta_f1,
+ f1_score=f1_score,
+ )
+ except ValueError:
+ report.append_row(
+ test.prevalence(),
+ acc=np.nan,
+ acc_score=np.nan,
+ f1=np.nan,
+ f1_score=np.nan,
+ )
+
+ return report
+
+
+@baseline
+def rca_star(
+ c_model: BaseEstimator,
+ validation: LabelledCollection,
+ protocol: AbstractStochasticSeededProtocol,
+ predict_method="predict",
+):
+ """elsahar19"""
+ c_model_predict = getattr(c_model, predict_method)
+ f1_average = "binary" if validation.n_classes == 2 else "macro"
+ validation1, val2 = validation.split_stratified(
+ train_prop=0.5, random_state=env._R_SEED
+ )
+ val11, val12 = validation1.split_stratified(
+ train_prop=0.5, random_state=env._R_SEED
+ )
+
+ val11_pred = c_model_predict(val11.X)
+ c_model1 = clone_fit(c_model, val11.X, val11_pred)
+ c_model1_predict = getattr(c_model1, predict_method)
+ val12_pred1 = c_model1_predict(val12.X)
+
+ val2_protocol = APP(
+ val2,
+ n_prevalences=21,
+ repeats=100,
+ return_type="labelled_collection",
+ )
+ val2_prot_preds = []
+ val2_rca = []
+ val2_prot_preds = []
+ val2_prot_y = []
+ for v2 in val2_protocol():
+ _preds = c_model_predict(v2.X)
+ try:
+ c_model2 = clone_fit(c_model, v2.X, _preds)
+ c_model2_predict = getattr(c_model2, predict_method)
+ val12_pred2 = c_model2_predict(val12.X)
+ rca_score = 1.0 - rcalib.get_score(val12_pred1, val12_pred2, val12.y)
+ val2_rca.append(rca_score)
+ val2_prot_preds.append(_preds)
+ val2_prot_y.append(v2.y)
+ except ValueError:
+ pass
+
+ val_targets_acc = np.array(
+ [
+ metrics.accuracy_score(v2_y, v2_preds)
+ for v2_y, v2_preds in zip(val2_prot_y, val2_prot_preds)
+ ]
+ )
+ reg_acc = LinearRegression().fit(np.array(val2_rca)[:, np.newaxis], val_targets_acc)
+ val_targets_f1 = np.array(
+ [
+ metrics.f1_score(v2_y, v2_preds, average=f1_average)
+ for v2_y, v2_preds in zip(val2_prot_y, val2_prot_preds)
+ ]
+ )
+ reg_f1 = LinearRegression().fit(np.array(val2_rca)[:, np.newaxis], val_targets_f1)
+
+ report = EvaluationReport(name="rca_star")
+ for test in protocol():
+ try:
+ test_pred = c_model_predict(test.X)
+ c_model2 = clone_fit(c_model, test.X, test_pred)
+ c_model2_predict = getattr(c_model2, predict_method)
+ val12_pred2 = c_model2_predict(val12.X)
+ rca_star_score = 1.0 - rcalib.get_score(val12_pred1, val12_pred2, val12.y)
+ acc_score = reg_acc.predict(np.array([[rca_star_score]]))[0]
+ f1_score = reg_f1.predict(np.array([[rca_score]]))[0]
+ meta_acc = abs(acc_score - metrics.accuracy_score(test.y, test_pred))
+ meta_f1 = abs(
+ f1_score - metrics.f1_score(test.y, test_pred, average=f1_average)
+ )
+ report.append_row(
+ test.prevalence(),
+ acc=meta_acc,
+ acc_score=acc_score,
+ f1=meta_f1,
+ f1_score=f1_score,
+ )
+ except ValueError:
+ report.append_row(
+ test.prevalence(),
+ acc=np.nan,
+ acc_score=np.nan,
+ f1=np.nan,
+ f1_score=np.nan,
+ )
return report
@@ -311,183 +515,6 @@ def doc_feat(
return report
-@baseline
-def rca(
- c_model: BaseEstimator,
- validation: LabelledCollection,
- protocol: AbstractStochasticSeededProtocol,
- predict_method="predict",
-):
- """elsahar19"""
- c_model_predict = getattr(c_model, predict_method)
- f1_average = "binary" if validation.n_classes == 2 else "macro"
- val1, val2 = validation.split_stratified(train_prop=0.5, random_state=env._R_SEED)
- val1_pred1 = c_model_predict(val1.X)
-
- val2_protocol = APP(
- val2,
- n_prevalences=21,
- repeats=100,
- return_type="labelled_collection",
- )
- val2_prot_preds = []
- val2_rca = []
- val2_prot_preds = []
- val2_prot_y = []
- for v2 in val2_protocol():
- _preds = c_model_predict(v2.X)
- try:
- c_model2 = clone_fit(c_model, v2.X, _preds)
- c_model2_predict = getattr(c_model2, predict_method)
- val1_pred2 = c_model2_predict(val1.X)
- rca_score = 1.0 - rcalib.get_score(val1_pred1, val1_pred2, val1.y)
- val2_rca.append(rca_score)
- val2_prot_preds.append(_preds)
- val2_prot_y.append(v2.y)
- except ValueError:
- pass
-
- val_targets_acc = np.array(
- [
- metrics.accuracy_score(v2_y, v2_preds)
- for v2_y, v2_preds in zip(val2_prot_y, val2_prot_preds)
- ]
- )
- reg_acc = LinearRegression().fit(np.array(val2_rca)[:, np.newaxis], val_targets_acc)
- val_targets_f1 = np.array(
- [
- metrics.f1_score(v2_y, v2_preds, average=f1_average)
- for v2_y, v2_preds in zip(val2_prot_y, val2_prot_preds)
- ]
- )
- reg_f1 = LinearRegression().fit(np.array(val2_rca)[:, np.newaxis], val_targets_f1)
-
- report = EvaluationReport(name="rca")
- for test in protocol():
- try:
- test_preds = c_model_predict(test.X)
- c_model2 = clone_fit(c_model, test.X, test_preds)
- c_model2_predict = getattr(c_model2, predict_method)
- val1_pred2 = c_model2_predict(val1.X)
- rca_score = 1.0 - rcalib.get_score(val1_pred1, val1_pred2, val1.y)
- acc_score = reg_acc.predict(np.array([[rca_score]]))[0]
- f1_score = reg_f1.predict(np.array([[rca_score]]))[0]
- meta_acc = abs(acc_score - metrics.accuracy_score(test.y, test_preds))
- meta_f1 = abs(
- f1_score - metrics.f1_score(test.y, test_preds, average=f1_average)
- )
- report.append_row(
- test.prevalence(),
- acc=meta_acc,
- acc_score=acc_score,
- f1=meta_f1,
- f1_score=f1_score,
- )
- except ValueError:
- report.append_row(
- test.prevalence(),
- acc=np.nan,
- acc_score=np.nan,
- f1=np.nan,
- f1_score=np.nan,
- )
-
- return report
-
-
-@baseline
-def rca_star(
- c_model: BaseEstimator,
- validation: LabelledCollection,
- protocol: AbstractStochasticSeededProtocol,
- predict_method="predict",
-):
- """elsahar19"""
- c_model_predict = getattr(c_model, predict_method)
- f1_average = "binary" if validation.n_classes == 2 else "macro"
- validation1, val2 = validation.split_stratified(
- train_prop=0.5, random_state=env._R_SEED
- )
- val11, val12 = validation1.split_stratified(
- train_prop=0.5, random_state=env._R_SEED
- )
-
- val11_pred = c_model_predict(val11.X)
- c_model1 = clone_fit(c_model, val11.X, val11_pred)
- c_model1_predict = getattr(c_model1, predict_method)
- val12_pred1 = c_model1_predict(val12.X)
-
- val2_protocol = APP(
- val2,
- n_prevalences=21,
- repeats=100,
- return_type="labelled_collection",
- )
- val2_prot_preds = []
- val2_rca = []
- val2_prot_preds = []
- val2_prot_y = []
- for v2 in val2_protocol():
- _preds = c_model_predict(v2.X)
- try:
- c_model2 = clone_fit(c_model, v2.X, _preds)
- c_model2_predict = getattr(c_model2, predict_method)
- val12_pred2 = c_model2_predict(val12.X)
- rca_score = 1.0 - rcalib.get_score(val12_pred1, val12_pred2, val12.y)
- val2_rca.append(rca_score)
- val2_prot_preds.append(_preds)
- val2_prot_y.append(v2.y)
- except ValueError:
- pass
-
- val_targets_acc = np.array(
- [
- metrics.accuracy_score(v2_y, v2_preds)
- for v2_y, v2_preds in zip(val2_prot_y, val2_prot_preds)
- ]
- )
- reg_acc = LinearRegression().fit(np.array(val2_rca)[:, np.newaxis], val_targets_acc)
- val_targets_f1 = np.array(
- [
- metrics.f1_score(v2_y, v2_preds, average=f1_average)
- for v2_y, v2_preds in zip(val2_prot_y, val2_prot_preds)
- ]
- )
- reg_f1 = LinearRegression().fit(np.array(val2_rca)[:, np.newaxis], val_targets_f1)
-
- report = EvaluationReport(name="rca_star")
- for test in protocol():
- try:
- test_pred = c_model_predict(test.X)
- c_model2 = clone_fit(c_model, test.X, test_pred)
- c_model2_predict = getattr(c_model2, predict_method)
- val12_pred2 = c_model2_predict(val12.X)
- rca_star_score = 1.0 - rcalib.get_score(val12_pred1, val12_pred2, val12.y)
- acc_score = reg_acc.predict(np.array([[rca_star_score]]))[0]
- f1_score = reg_f1.predict(np.array([[rca_score]]))[0]
- meta_acc = abs(acc_score - metrics.accuracy_score(test.y, test_pred))
- meta_f1 = abs(
- f1_score - metrics.f1_score(test.y, test_pred, average=f1_average)
- )
- report.append_row(
- test.prevalence(),
- acc=meta_acc,
- acc_score=acc_score,
- f1=meta_f1,
- f1_score=f1_score,
- )
- except ValueError:
- report.append_row(
- test.prevalence(),
- acc=np.nan,
- acc_score=np.nan,
- f1=np.nan,
- f1_score=np.nan,
- )
-
- return report
-
-
@baseline
def gde(
c_model: BaseEstimator,
@@ -514,33 +541,6 @@ def gde(
return report
-@baseline
-def mandoline(
- c_model: BaseEstimator,
- validation: LabelledCollection,
- protocol: AbstractStochasticSeededProtocol,
- predict_method="predict_proba",
-) -> EvaluationReport:
- c_model_predict = getattr(c_model, predict_method)
-
- val_probs = c_model_predict(validation.X)
- val_preds = np.argmax(val_probs, axis=1)
- D_val = mandolib.get_slices(val_probs)
- emprical_mat_list_val = (1.0 * (val_preds == validation.y))[:, np.newaxis]
-
- report = EvaluationReport(name="mandoline")
- for test in protocol():
- test_probs = c_model_predict(test.X)
- test_pred = np.argmax(test_probs, axis=1)
- D_test = mandolib.get_slices(test_probs)
- wp = mandolib.estimate_performance(D_val, D_test, None, emprical_mat_list_val)
- score = wp.all_estimates[0].weighted[0]
- meta_score = abs(score - metrics.accuracy_score(test.y, test_pred))
- report.append_row(test.prevalence(), acc=meta_score, acc_score=score)
-
- return report
-
-
@baseline
def logreg(
c_model: BaseEstimator,
diff --git a/quacc/evaluation/estimators.py b/quacc/evaluation/estimators.py
index 6f5ff4d..476584b 100644
--- a/quacc/evaluation/estimators.py
+++ b/quacc/evaluation/estimators.py
@@ -40,20 +40,19 @@ class CompEstimatorName_:
class CompEstimator:
def __get(cls, e: str | List[str], get_ref=True):
- _dict = alt._alts | method._methods | baseline._baselines
+ _dict = alt._alts | baseline._baselines | method._methods
- match e:
- case "__all":
- e = list(_dict.keys())
- case "__baselines":
- e = list(baseline._baselines.keys())
+ if isinstance(e, str) and e == "__all":
+ e = list(_dict.keys())
+ if isinstance(e, str) and e == "__baselines":
+ e = list(baseline._baselines.keys())
if isinstance(e, str):
try:
return {e: _dict[e]}
except KeyError:
raise KeyError(f"Invalid estimator: estimator {e} does not exist")
- elif isinstance(e, list):
+ elif isinstance(e, list) or isinstance(e, np.ndarray):
_subtr = np.setdiff1d(e, list(_dict.keys()))
if len(_subtr) > 0:
raise KeyError(
@@ -89,7 +88,8 @@ _renames = {
"d_bin_sld_rbf": "(2x2)_SLD_RBF",
"d_mul_sld_rbf": "(1x4)_SLD_RBF",
"d_m3w_sld_rbf": "(1x3)_SLD_RBF",
- "sld_lr": "SLD_LR",
+ # "sld_lr_gs": "MS_SLD_LR",
+ "sld_lr_gs": "QuAcc(SLD)",
"bin_kde_lr": "(2x2)_KDEy_LR",
"mul_kde_lr": "(1x4)_KDEy_LR",
"m3w_kde_lr": "(1x3)_KDEy_LR",
@@ -99,8 +99,10 @@ _renames = {
"bin_cc_lr": "(2x2)_CC_LR",
"mul_cc_lr": "(1x4)_CC_LR",
"m3w_cc_lr": "(1x3)_CC_LR",
- "kde_lr": "KDEy_LR",
- "cc_lr": "CC_LR",
+ # "kde_lr_gs": "MS_KDEy_LR",
+ "kde_lr_gs": "QuAcc(KDEy)",
+ # "cc_lr_gs": "MS_CC_LR",
+ "cc_lr_gs": "QuAcc(CC)",
"atc_mc": "ATC",
"doc": "DoC",
"mandoline": "Mandoline",
diff --git a/quacc/evaluation/method.py b/quacc/evaluation/method.py
index 9232283..3b0af41 100644
--- a/quacc/evaluation/method.py
+++ b/quacc/evaluation/method.py
@@ -242,12 +242,6 @@ __sld_lr_set = [
M("mul_sld_lr", __sld_lr(), "mul" ),
M("m3w_sld_lr", __sld_lr(), "mul", cf=True),
M("mgf_sld_lr", __sld_lr(), "mul", gf=True),
- # max_conf + entropy sld
- M("bin_sld_lr_c", __sld_lr(), "bin", conf=["max_conf", "entropy"] ),
- M("bgf_sld_lr_c", __sld_lr(), "bin", conf=["max_conf", "entropy"], gf=True),
- M("mul_sld_lr_c", __sld_lr(), "mul", conf=["max_conf", "entropy"] ),
- M("m3w_sld_lr_c", __sld_lr(), "mul", conf=["max_conf", "entropy"], cf=True),
- M("mgf_sld_lr_c", __sld_lr(), "mul", conf=["max_conf", "entropy"], gf=True),
# max_conf sld
M("bin_sld_lr_mc", __sld_lr(), "bin", conf="max_conf", ),
M("bgf_sld_lr_mc", __sld_lr(), "bin", conf="max_conf", gf=True),
@@ -266,6 +260,12 @@ __sld_lr_set = [
M("mul_sld_lr_is", __sld_lr(), "mul", conf="isoft", ),
M("m3w_sld_lr_is", __sld_lr(), "mul", conf="isoft", cf=True),
M("mgf_sld_lr_is", __sld_lr(), "mul", conf="isoft", gf=True),
+ # max_conf + entropy sld
+ M("bin_sld_lr_c", __sld_lr(), "bin", conf=["max_conf", "entropy"] ),
+ M("bgf_sld_lr_c", __sld_lr(), "bin", conf=["max_conf", "entropy"], gf=True),
+ M("mul_sld_lr_c", __sld_lr(), "mul", conf=["max_conf", "entropy"] ),
+ M("m3w_sld_lr_c", __sld_lr(), "mul", conf=["max_conf", "entropy"], cf=True),
+ M("mgf_sld_lr_c", __sld_lr(), "mul", conf=["max_conf", "entropy"], gf=True),
# sld all
M("bin_sld_lr_a", __sld_lr(), "bin", conf=["max_conf", "entropy", "isoft"], ),
M("bgf_sld_lr_a", __sld_lr(), "bin", conf=["max_conf", "entropy", "isoft"], gf=True),
@@ -278,7 +278,6 @@ __sld_lr_set = [
G("mul_sld_lr_gs", __sld_lr(), "mul", pg="sld_lr" ),
G("m3w_sld_lr_gs", __sld_lr(), "mul", pg="sld_lr", cf=True),
G("mgf_sld_lr_gs", __sld_lr(), "mul", pg="sld_lr", gf=True),
- E("sld_lr_gs"),
]
__dense_sld_lr_set = [
@@ -287,12 +286,6 @@ __dense_sld_lr_set = [
M("d_mul_sld_lr", __sld_lr(), "mul", d=True, ),
M("d_m3w_sld_lr", __sld_lr(), "mul", d=True, cf=True),
M("d_mgf_sld_lr", __sld_lr(), "mul", d=True, gf=True),
- # max_conf + entropy sld
- M("d_bin_sld_lr_c", __sld_lr(), "bin", d=True, conf=["max_conf", "entropy"] ),
- M("d_bgf_sld_lr_c", __sld_lr(), "bin", d=True, conf=["max_conf", "entropy"], gf=True),
- M("d_mul_sld_lr_c", __sld_lr(), "mul", d=True, conf=["max_conf", "entropy"] ),
- M("d_m3w_sld_lr_c", __sld_lr(), "mul", d=True, conf=["max_conf", "entropy"], cf=True),
- M("d_mgf_sld_lr_c", __sld_lr(), "mul", d=True, conf=["max_conf", "entropy"], gf=True),
# max_conf sld
M("d_bin_sld_lr_mc", __sld_lr(), "bin", d=True, conf="max_conf", ),
M("d_bgf_sld_lr_mc", __sld_lr(), "bin", d=True, conf="max_conf", gf=True),
@@ -311,6 +304,12 @@ __dense_sld_lr_set = [
M("d_mul_sld_lr_is", __sld_lr(), "mul", d=True, conf="isoft", ),
M("d_m3w_sld_lr_is", __sld_lr(), "mul", d=True, conf="isoft", cf=True),
M("d_mgf_sld_lr_is", __sld_lr(), "mul", d=True, conf="isoft", gf=True),
+ # max_conf + entropy sld
+ M("d_bin_sld_lr_c", __sld_lr(), "bin", d=True, conf=["max_conf", "entropy"] ),
+ M("d_bgf_sld_lr_c", __sld_lr(), "bin", d=True, conf=["max_conf", "entropy"], gf=True),
+ M("d_mul_sld_lr_c", __sld_lr(), "mul", d=True, conf=["max_conf", "entropy"] ),
+ M("d_m3w_sld_lr_c", __sld_lr(), "mul", d=True, conf=["max_conf", "entropy"], cf=True),
+ M("d_mgf_sld_lr_c", __sld_lr(), "mul", d=True, conf=["max_conf", "entropy"], gf=True),
# sld all
M("d_bin_sld_lr_a", __sld_lr(), "bin", d=True, conf=["max_conf", "entropy", "isoft"], ),
M("d_bgf_sld_lr_a", __sld_lr(), "bin", d=True, conf=["max_conf", "entropy", "isoft"], gf=True),
@@ -331,12 +330,6 @@ __dense_sld_rbf_set = [
M("d_mul_sld_rbf", __sld_rbf(), "mul", d=True, ),
M("d_m3w_sld_rbf", __sld_rbf(), "mul", d=True, cf=True),
M("d_mgf_sld_rbf", __sld_rbf(), "mul", d=True, gf=True),
- # max_conf + entropy sld
- M("d_bin_sld_rbf_c", __sld_rbf(), "bin", d=True, conf=["max_conf", "entropy"] ),
- M("d_bgf_sld_rbf_c", __sld_rbf(), "bin", d=True, conf=["max_conf", "entropy"], gf=True),
- M("d_mul_sld_rbf_c", __sld_rbf(), "mul", d=True, conf=["max_conf", "entropy"] ),
- M("d_m3w_sld_rbf_c", __sld_rbf(), "mul", d=True, conf=["max_conf", "entropy"], cf=True),
- M("d_mgf_sld_rbf_c", __sld_rbf(), "mul", d=True, conf=["max_conf", "entropy"], gf=True),
# max_conf sld
M("d_bin_sld_rbf_mc", __sld_rbf(), "bin", d=True, conf="max_conf", ),
M("d_bgf_sld_rbf_mc", __sld_rbf(), "bin", d=True, conf="max_conf", gf=True),
@@ -355,6 +348,12 @@ __dense_sld_rbf_set = [
M("d_mul_sld_rbf_is", __sld_rbf(), "mul", d=True, conf="isoft", ),
M("d_m3w_sld_rbf_is", __sld_rbf(), "mul", d=True, conf="isoft", cf=True),
M("d_mgf_sld_rbf_is", __sld_rbf(), "mul", d=True, conf="isoft", gf=True),
+ # max_conf + entropy sld
+ M("d_bin_sld_rbf_c", __sld_rbf(), "bin", d=True, conf=["max_conf", "entropy"] ),
+ M("d_bgf_sld_rbf_c", __sld_rbf(), "bin", d=True, conf=["max_conf", "entropy"], gf=True),
+ M("d_mul_sld_rbf_c", __sld_rbf(), "mul", d=True, conf=["max_conf", "entropy"] ),
+ M("d_m3w_sld_rbf_c", __sld_rbf(), "mul", d=True, conf=["max_conf", "entropy"], cf=True),
+ M("d_mgf_sld_rbf_c", __sld_rbf(), "mul", d=True, conf=["max_conf", "entropy"], gf=True),
# sld all
M("d_bin_sld_rbf_a", __sld_rbf(), "bin", d=True, conf=["max_conf", "entropy", "isoft"], ),
M("d_bgf_sld_rbf_a", __sld_rbf(), "bin", d=True, conf=["max_conf", "entropy", "isoft"], gf=True),
@@ -374,10 +373,6 @@ __kde_lr_set = [
M("bin_kde_lr", __kde_lr(), "bin" ),
M("mul_kde_lr", __kde_lr(), "mul" ),
M("m3w_kde_lr", __kde_lr(), "mul", cf=True),
- # max_conf + entropy kde
- M("bin_kde_lr_c", __kde_lr(), "bin", conf=["max_conf", "entropy"] ),
- M("mul_kde_lr_c", __kde_lr(), "mul", conf=["max_conf", "entropy"] ),
- M("m3w_kde_lr_c", __kde_lr(), "mul", conf=["max_conf", "entropy"], cf=True),
# max_conf kde
M("bin_kde_lr_mc", __kde_lr(), "bin", conf="max_conf", ),
M("mul_kde_lr_mc", __kde_lr(), "mul", conf="max_conf", ),
@@ -390,6 +385,10 @@ __kde_lr_set = [
M("bin_kde_lr_is", __kde_lr(), "bin", conf="isoft", ),
M("mul_kde_lr_is", __kde_lr(), "mul", conf="isoft", ),
M("m3w_kde_lr_is", __kde_lr(), "mul", conf="isoft", cf=True),
+ # max_conf + entropy kde
+ M("bin_kde_lr_c", __kde_lr(), "bin", conf=["max_conf", "entropy"] ),
+ M("mul_kde_lr_c", __kde_lr(), "mul", conf=["max_conf", "entropy"] ),
+ M("m3w_kde_lr_c", __kde_lr(), "mul", conf=["max_conf", "entropy"], cf=True),
# kde all
M("bin_kde_lr_a", __kde_lr(), "bin", conf=["max_conf", "entropy", "isoft"], ),
M("mul_kde_lr_a", __kde_lr(), "mul", conf=["max_conf", "entropy", "isoft"], ),
@@ -398,7 +397,6 @@ __kde_lr_set = [
G("bin_kde_lr_gs", __kde_lr(), "bin", pg="kde_lr", search="grid" ),
G("mul_kde_lr_gs", __kde_lr(), "mul", pg="kde_lr", search="grid" ),
G("m3w_kde_lr_gs", __kde_lr(), "mul", pg="kde_lr", search="grid", cf=True),
- E("kde_lr_gs"),
]
__dense_kde_lr_set = [
@@ -406,10 +404,6 @@ __dense_kde_lr_set = [
M("d_bin_kde_lr", __kde_lr(), "bin", d=True, ),
M("d_mul_kde_lr", __kde_lr(), "mul", d=True, ),
M("d_m3w_kde_lr", __kde_lr(), "mul", d=True, cf=True),
- # max_conf + entropy kde
- M("d_bin_kde_lr_c", __kde_lr(), "bin", d=True, conf=["max_conf", "entropy"] ),
- M("d_mul_kde_lr_c", __kde_lr(), "mul", d=True, conf=["max_conf", "entropy"] ),
- M("d_m3w_kde_lr_c", __kde_lr(), "mul", d=True, conf=["max_conf", "entropy"], cf=True),
# max_conf kde
M("d_bin_kde_lr_mc", __kde_lr(), "bin", d=True, conf="max_conf", ),
M("d_mul_kde_lr_mc", __kde_lr(), "mul", d=True, conf="max_conf", ),
@@ -422,6 +416,10 @@ __dense_kde_lr_set = [
M("d_bin_kde_lr_is", __kde_lr(), "bin", d=True, conf="isoft", ),
M("d_mul_kde_lr_is", __kde_lr(), "mul", d=True, conf="isoft", ),
M("d_m3w_kde_lr_is", __kde_lr(), "mul", d=True, conf="isoft", cf=True),
+ # max_conf + entropy kde
+ M("d_bin_kde_lr_c", __kde_lr(), "bin", d=True, conf=["max_conf", "entropy"] ),
+ M("d_mul_kde_lr_c", __kde_lr(), "mul", d=True, conf=["max_conf", "entropy"] ),
+ M("d_m3w_kde_lr_c", __kde_lr(), "mul", d=True, conf=["max_conf", "entropy"], cf=True),
# kde all
M("d_bin_kde_lr_a", __kde_lr(), "bin", d=True, conf=["max_conf", "entropy", "isoft"], ),
M("d_mul_kde_lr_a", __kde_lr(), "mul", d=True, conf=["max_conf", "entropy", "isoft"], ),
@@ -437,10 +435,6 @@ __dense_kde_rbf_set = [
M("d_bin_kde_rbf", __kde_rbf(), "bin", d=True, ),
M("d_mul_kde_rbf", __kde_rbf(), "mul", d=True, ),
M("d_m3w_kde_rbf", __kde_rbf(), "mul", d=True, cf=True),
- # max_conf + entropy kde
- M("d_bin_kde_rbf_c", __kde_rbf(), "bin", d=True, conf=["max_conf", "entropy"] ),
- M("d_mul_kde_rbf_c", __kde_rbf(), "mul", d=True, conf=["max_conf", "entropy"] ),
- M("d_m3w_kde_rbf_c", __kde_rbf(), "mul", d=True, conf=["max_conf", "entropy"], cf=True),
# max_conf kde
M("d_bin_kde_rbf_mc", __kde_rbf(), "bin", d=True, conf="max_conf", ),
M("d_mul_kde_rbf_mc", __kde_rbf(), "mul", d=True, conf="max_conf", ),
@@ -453,6 +447,10 @@ __dense_kde_rbf_set = [
M("d_bin_kde_rbf_is", __kde_rbf(), "bin", d=True, conf="isoft", ),
M("d_mul_kde_rbf_is", __kde_rbf(), "mul", d=True, conf="isoft", ),
M("d_m3w_kde_rbf_is", __kde_rbf(), "mul", d=True, conf="isoft", cf=True),
+ # max_conf + entropy kde
+ M("d_bin_kde_rbf_c", __kde_rbf(), "bin", d=True, conf=["max_conf", "entropy"] ),
+ M("d_mul_kde_rbf_c", __kde_rbf(), "mul", d=True, conf=["max_conf", "entropy"] ),
+ M("d_m3w_kde_rbf_c", __kde_rbf(), "mul", d=True, conf=["max_conf", "entropy"], cf=True),
# kde all
M("d_bin_kde_rbf_a", __kde_rbf(), "bin", d=True, conf=["max_conf", "entropy", "isoft"], ),
M("d_mul_kde_rbf_a", __kde_rbf(), "mul", d=True, conf=["max_conf", "entropy", "isoft"], ),
@@ -468,10 +466,6 @@ __cc_lr_set = [
M("bin_cc_lr", __cc_lr(), "bin" ),
M("mul_cc_lr", __cc_lr(), "mul" ),
M("m3w_cc_lr", __cc_lr(), "mul", cf=True),
- # max_conf + entropy cc
- M("bin_cc_lr_c", __cc_lr(), "bin", conf=["max_conf", "entropy"] ),
- M("mul_cc_lr_c", __cc_lr(), "mul", conf=["max_conf", "entropy"] ),
- M("m3w_cc_lr_c", __cc_lr(), "mul", conf=["max_conf", "entropy"], cf=True),
# max_conf cc
M("bin_cc_lr_mc", __cc_lr(), "bin", conf="max_conf", ),
M("mul_cc_lr_mc", __cc_lr(), "mul", conf="max_conf", ),
@@ -484,6 +478,10 @@ __cc_lr_set = [
M("bin_cc_lr_is", __cc_lr(), "bin", conf="isoft", ),
M("mul_cc_lr_is", __cc_lr(), "mul", conf="isoft", ),
M("m3w_cc_lr_is", __cc_lr(), "mul", conf="isoft", cf=True),
+ # max_conf + entropy cc
+ M("bin_cc_lr_c", __cc_lr(), "bin", conf=["max_conf", "entropy"] ),
+ M("mul_cc_lr_c", __cc_lr(), "mul", conf=["max_conf", "entropy"] ),
+ M("m3w_cc_lr_c", __cc_lr(), "mul", conf=["max_conf", "entropy"], cf=True),
# cc all
M("bin_cc_lr_a", __cc_lr(), "bin", conf=["max_conf", "entropy", "isoft"], ),
M("mul_cc_lr_a", __cc_lr(), "mul", conf=["max_conf", "entropy", "isoft"], ),
@@ -492,7 +490,13 @@ __cc_lr_set = [
G("bin_cc_lr_gs", __cc_lr(), "bin", pg="cc_lr", search="grid" ),
G("mul_cc_lr_gs", __cc_lr(), "mul", pg="cc_lr", search="grid" ),
G("m3w_cc_lr_gs", __cc_lr(), "mul", pg="cc_lr", search="grid", cf=True),
+]
+
+__ms_set = [
E("cc_lr_gs"),
+ E("sld_lr_gs"),
+ E("kde_lr_gs"),
+ E("QuAcc"),
]
# fmt: on
@@ -505,7 +509,7 @@ __methods_set = (
+ __dense_kde_lr_set
+ __dense_kde_rbf_set
+ __cc_lr_set
- + [E("QuAcc")]
+ + __ms_set
)
_methods = {m.name: m for m in __methods_set}
diff --git a/quacc/evaluation/report.py b/quacc/evaluation/report.py
index 20df414..a6ba71b 100644
--- a/quacc/evaluation/report.py
+++ b/quacc/evaluation/report.py
@@ -159,10 +159,10 @@ class CompReport:
if estimators is not None and name not in estimators:
continue
- if len(np.where(np.in1d(methods, self._data.columns.unique(1)))[0]) != len(
- methods
- ):
+ available_idx = np.where(np.in1d(methods, self._data.columns.unique(1)))[0]
+ if len(available_idx) == 0:
continue
+ methods = np.array(methods)[available_idx]
_metric = _get_metric(metric)
m_data = _data.loc[:, (_metric, methods)]
@@ -447,6 +447,7 @@ class DatasetReport:
"delta_test",
"stdev_test",
"test_table",
+ "diagonal",
"stats_table",
"fit_scores",
]
@@ -745,6 +746,25 @@ class DatasetReport:
base_path=base_path,
backend=backend,
)
+ elif mode == "diagonal":
+ f_data = self.data(metric=metric + "_score", estimators=estimators)
+ if f_data.empty:
+ return None
+
+ ref: pd.Series = f_data.loc[:, "ref"]
+ f_data.drop(columns=["ref"], inplace=True)
+ return plot.plot_diagonal(
+ reference=ref.to_numpy(),
+ columns=f_data.columns.to_numpy(),
+ data=f_data.T.to_numpy(),
+ metric=metric,
+ name=conf,
+ # train_prev=self.train_prev,
+ fixed_lim=True,
+ save_fig=save_fig,
+ base_path=base_path,
+ backend=backend,
+ )
def to_md(
self,
diff --git a/quacc/plot/base.py b/quacc/plot/base.py
index 04e9e8c..a44b219 100644
--- a/quacc/plot/base.py
+++ b/quacc/plot/base.py
@@ -17,6 +17,7 @@ class BasePlot:
title="default",
x_label="true",
y_label="estim.",
+ fixed_lim=False,
legend=True,
):
...
diff --git a/quacc/plot/plot.py b/quacc/plot/plot.py
index fa7c082..3eebf1e 100644
--- a/quacc/plot/plot.py
+++ b/quacc/plot/plot.py
@@ -77,6 +77,7 @@ def plot_diagonal(
metric="acc",
name="default",
train_prev=None,
+ fixed_lim=False,
legend=True,
save_fig=False,
base_path=None,
@@ -103,6 +104,7 @@ def plot_diagonal(
title=title,
x_label=x_label,
y_label=y_label,
+ fixed_lim=fixed_lim,
legend=legend,
)
diff --git a/quacc/plot/plotly.py b/quacc/plot/plotly.py
index 9a62f22..52a514d 100644
--- a/quacc/plot/plotly.py
+++ b/quacc/plot/plotly.py
@@ -5,7 +5,7 @@ import numpy as np
import plotly
import plotly.graph_objects as go
-from quacc.evaluation.estimators import _renames
+from quacc.evaluation.estimators import CE, _renames
from quacc.plot.base import BasePlot
@@ -19,7 +19,7 @@ class PlotCfg:
web_cfg = PlotCfg("lines+markers", 2)
-png_cfg = PlotCfg(
+png_cfg_old = PlotCfg(
"lines",
5,
legend=dict(
@@ -33,6 +33,18 @@ png_cfg = PlotCfg(
font=dict(size=24),
# template="ggplot2",
)
+png_cfg = PlotCfg(
+ "lines",
+ 5,
+ legend=dict(
+ font=dict(
+ family="DejaVu Sans",
+ size=24,
+ ),
+ ),
+ font=dict(size=24),
+ # template="ggplot2",
+)
_cfg = png_cfg
@@ -122,16 +134,21 @@ class PlotlyPlot(BasePlot):
if isinstance(base_prevs[0], float):
base_prevs = np.around([(1 - bp, bp) for bp in base_prevs], decimals=4)
x = [str(tuple(bp)) for bp in base_prevs]
- columns = self.rename_plots(columns)
+ named_data = {c: d for c, d in zip(columns, data)}
+ r_columns = {c: r for c, r in zip(columns, self.rename_plots(columns))}
line_colors = self.get_colors(len(columns))
- for name, delta in zip(columns, data):
+ # for name, delta in zip(columns, data):
+ columns = np.array(CE.name.sort(columns))
+ for name in columns:
+ delta = named_data[name]
+ r_name = r_columns[name]
color = next(line_colors)
_line = [
go.Scatter(
x=x,
y=delta,
mode=_cfg.mode,
- name=name,
+ name=r_name,
line=dict(color=self.hex_to_rgb(color), width=_cfg.lwidth),
hovertemplate="prev.: %{x}
error: %{y:,.4f}",
)
@@ -167,20 +184,31 @@ class PlotlyPlot(BasePlot):
title="default",
x_label="true",
y_label="estim.",
+ fixed_lim=False,
legend=True,
) -> go.Figure:
fig = go.Figure()
x = reference
- columns = self.rename_plots(columns)
line_colors = self.get_colors(len(columns))
- _edges = (np.min([np.min(x), np.min(data)]), np.max([np.max(x), np.max(data)]))
- _lims = np.array([[_edges[0], _edges[1]], [_edges[0], _edges[1]]])
+ if fixed_lim:
+ _lims = np.array([[0.0, 1.0], [0.0, 1.0]])
+ else:
+ _edges = (
+ np.min([np.min(x), np.min(data)]),
+ np.max([np.max(x), np.max(data)]),
+ )
+ _lims = np.array([[_edges[0], _edges[1]], [_edges[0], _edges[1]]])
- for name, val in zip(columns, data):
+ named_data = {c: d for c, d in zip(columns, data)}
+ r_columns = {c: r for c, r in zip(columns, self.rename_plots(columns))}
+ columns = np.array(CE.name.sort(columns))
+ for name in columns:
+ val = named_data[name]
+ r_name = r_columns[name]
color = next(line_colors)
slope, interc = np.polyfit(x, val, 1)
- y_lr = np.array([slope * _x + interc for _x in _lims[0]])
+ # y_lr = np.array([slope * _x + interc for _x in _lims[0]])
fig.add_traces(
[
go.Scatter(
@@ -188,18 +216,26 @@ class PlotlyPlot(BasePlot):
y=val,
customdata=np.stack((val - x,), axis=-1),
mode="markers",
- name=name,
- line=dict(color=self.hex_to_rgb(color, t=0.5)),
+ name=r_name,
+ marker=dict(color=self.hex_to_rgb(color, t=0.5)),
hovertemplate="true acc: %{x:,.4f}
estim. acc: %{y:,.4f}
acc err.: %{customdata[0]:,.4f}",
+ # showlegend=False,
),
- go.Scatter(
- x=_lims[0],
- y=y_lr,
- mode="lines",
- name=name,
- line=dict(color=self.hex_to_rgb(color), width=3),
- showlegend=False,
- ),
+ # go.Scatter(
+ # x=[x[-1]],
+ # y=[val[-1]],
+ # mode="markers",
+ # marker=dict(color=self.hex_to_rgb(color), size=8),
+ # name=r_name,
+ # ),
+ # go.Scatter(
+ # x=_lims[0],
+ # y=y_lr,
+ # mode="lines",
+ # name=name,
+ # line=dict(color=self.hex_to_rgb(color), width=3),
+ # showlegend=False,
+ # ),
]
)
fig.add_trace(
@@ -214,7 +250,14 @@ class PlotlyPlot(BasePlot):
)
self.update_layout(fig, title, x_label, y_label)
- fig.update_layout(yaxis_scaleanchor="x", yaxis_scaleratio=1.0)
+ fig.update_layout(
+ autosize=False,
+ width=1300,
+ height=1000,
+ yaxis_scaleanchor="x",
+ yaxis_scaleratio=1.0,
+ yaxis_range=[-0.1, 1.1],
+ )
return fig
def plot_shift(
@@ -233,9 +276,13 @@ class PlotlyPlot(BasePlot):
fig = go.Figure()
# x = shift_prevs[:, pos_class]
x = shift_prevs
- columns = self.rename_plots(columns)
line_colors = self.get_colors(len(columns))
- for name, delta in zip(columns, data):
+ named_data = {c: d for c, d in zip(columns, data)}
+ r_columns = {c: r for c, r in zip(columns, self.rename_plots(columns))}
+ columns = np.array(CE.name.sort(columns))
+ for name in columns:
+ delta = named_data[name]
+ r_name = r_columns[name]
col_idx = (columns == name).nonzero()[0][0]
color = next(line_colors)
fig.add_trace(
@@ -244,7 +291,7 @@ class PlotlyPlot(BasePlot):
y=delta,
customdata=np.stack((counts[col_idx],), axis=-1),
mode=_cfg.mode,
- name=name,
+ name=r_name,
line=dict(color=self.hex_to_rgb(color), width=_cfg.lwidth),
hovertemplate="shift: %{x}
error: %{y}"
+ "
count: %{customdata[0]}"
diff --git a/test_imdb_max_shift.py b/test_imdb_max_shift.py
new file mode 100644
index 0000000..e3a59de
--- /dev/null
+++ b/test_imdb_max_shift.py
@@ -0,0 +1,15 @@
+from quacc.evaluation.report import DatasetReport
+import pandas as pd
+
+dr = DatasetReport.unpickle("output/main/imdb/imdb.pickle")
+
+_data = dr.data(
+ metric="acc", estimators=["bin_sld_lr_mc", "bin_sld_lr_ne", "bin_sld_lr_c"]
+)
+d1 = _data.loc[((0.9, 0.1), (1.0, 0.0), slice(None)), :]
+d2 = _data.loc[((0.1, 0.9), (0.0, 1.0), slice(None)), :]
+dd = pd.concat([d1, d2], axis=0)
+
+print(d1.to_numpy(), "\n", d1.mean(), "\n")
+print(d2.to_numpy(), "\n", d2.mean(), "\n")
+print(dd.to_numpy(), "\n", dd.mean(), "\n")