wilcoxon statistic added
This commit is contained in:
parent
dddf8746e2
commit
2eaa5debd1
|
@ -6,7 +6,7 @@ import panel as pn
|
|||
|
||||
from quacc.evaluation.estimators import CE
|
||||
from quacc.evaluation.report import CompReport, DatasetReport
|
||||
from quacc.evaluation.stats import ttest_rel
|
||||
from quacc.evaluation.stats import wilcoxon
|
||||
|
||||
_plot_sizing_mode = "stretch_both"
|
||||
valid_plot_modes = defaultdict(lambda: CompReport._default_modes)
|
||||
|
@ -44,7 +44,7 @@ def create_plots(
|
|||
)
|
||||
return pn.pane.DataFrame(_data, align="center") if not _data.empty else None
|
||||
case ("avg", "stats_table"):
|
||||
_data = ttest_rel(dr, metric=metric, estimators=estimators)
|
||||
_data = wilcoxon(dr, metric=metric, estimators=estimators)
|
||||
return pn.pane.DataFrame(_data, align="center") if not _data.empty else None
|
||||
case ("avg", _ as plot_mode):
|
||||
_plot = dr.get_plots(
|
||||
|
@ -80,6 +80,10 @@ def create_plots(
|
|||
.mean()
|
||||
)
|
||||
return pn.pane.DataFrame(_data, align="center") if not _data.empty else None
|
||||
case (_, "stats_table"):
|
||||
cr = dr.crs[_prevs.index(int(plot_view))]
|
||||
_data = wilcoxon(cr, metric=metric, estimators=estimators)
|
||||
return pn.pane.DataFrame(_data, align="center") if not _data.empty else None
|
||||
case (_, _ as plot_mode):
|
||||
cr = dr.crs[_prevs.index(int(plot_view))]
|
||||
_plot = cr.get_plots(
|
||||
|
|
|
@ -66,6 +66,7 @@ class CompReport:
|
|||
"shift",
|
||||
"shift_table",
|
||||
"diagonal",
|
||||
"stats_table",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
|
|
|
@ -4,34 +4,37 @@ import numpy as np
|
|||
import pandas as pd
|
||||
from scipy import stats as sp_stats
|
||||
|
||||
from quacc.evaluation.estimators import CE
|
||||
from quacc.evaluation.report import DatasetReport
|
||||
# from quacc.evaluation.estimators import CE
|
||||
from quacc.evaluation.report import CompReport, DatasetReport
|
||||
|
||||
|
||||
def ttest_rel(
|
||||
dr: DatasetReport, metric: str = None, estimators: List[str] = None
|
||||
def shapiro(
|
||||
r: DatasetReport | CompReport, metric: str = None, estimators: List[str] = None
|
||||
) -> pd.DataFrame:
|
||||
_data = dr.data(metric, estimators)
|
||||
|
||||
_data = r.data(metric, estimators)
|
||||
shapiro_data = np.array(
|
||||
[sp_stats.shapiro(_data.loc[:, e]) for e in _data.columns.unique(0)]
|
||||
).T
|
||||
dr_index = ["shapiro_W", "shapiro_p"]
|
||||
dr_columns = _data.columns.unique(0)
|
||||
return pd.DataFrame(shapiro_data, columns=dr_columns, index=dr_index)
|
||||
|
||||
_ttest_rel = {}
|
||||
for bs in np.intersect1d(CE.name.baselines, _data.columns.unique(0)):
|
||||
_ttest_rel[f"ttr_{bs}"] = [
|
||||
sp_stats.ttest_rel(_data.loc[:, bs], _data.loc[:, e]).statistic
|
||||
if e not in CE.name.baselines
|
||||
else np.nan
|
||||
|
||||
def wilcoxon(
|
||||
r: DatasetReport | CompReport, metric: str = None, estimators: List[str] = None
|
||||
) -> pd.DataFrame:
|
||||
_data = r.data(metric, estimators)
|
||||
|
||||
_wilcoxon = {}
|
||||
for est in _data.columns.unique(0):
|
||||
_wilcoxon[est] = [
|
||||
sp_stats.wilcoxon(_data.loc[:, est], _data.loc[:, e]).pvalue
|
||||
if e != est
|
||||
else 1.0
|
||||
for e in _data.columns.unique(0)
|
||||
]
|
||||
ttr_data = np.array(list(_ttest_rel.values()))
|
||||
wilcoxon_data = np.array(list(_wilcoxon.values()))
|
||||
|
||||
dr_index = ["shapiro_W", "shapiro_p"] + list(_ttest_rel.keys())
|
||||
dr_index = list(_wilcoxon.keys())
|
||||
dr_columns = _data.columns.unique(0)
|
||||
dr_data = (
|
||||
np.concatenate([shapiro_data, ttr_data], axis=0)
|
||||
if ttr_data.shape[0] > 0
|
||||
else shapiro_data
|
||||
)
|
||||
return pd.DataFrame(dr_data, columns=dr_columns, index=dr_index)
|
||||
return pd.DataFrame(wilcoxon_data, columns=dr_columns, index=dr_index)
|
||||
|
|
Loading…
Reference in New Issue