panel refactored
This commit is contained in:
parent
e69e8381e3
commit
2aa77d9e19
149
qcpanel/util.py
149
qcpanel/util.py
|
@ -13,7 +13,7 @@ valid_plot_modes = defaultdict(lambda: CompReport._default_modes)
|
||||||
valid_plot_modes["avg"] = DatasetReport._default_dr_modes
|
valid_plot_modes["avg"] = DatasetReport._default_dr_modes
|
||||||
|
|
||||||
|
|
||||||
def create_plots(
|
def create_plot(
|
||||||
dr: DatasetReport,
|
dr: DatasetReport,
|
||||||
mode="delta",
|
mode="delta",
|
||||||
metric="acc",
|
metric="acc",
|
||||||
|
@ -24,28 +24,7 @@ def create_plots(
|
||||||
estimators = CE.name[estimators]
|
estimators = CE.name[estimators]
|
||||||
if mode is None:
|
if mode is None:
|
||||||
mode = valid_plot_modes[plot_view][0]
|
mode = valid_plot_modes[plot_view][0]
|
||||||
_dpi = 112
|
|
||||||
match (plot_view, mode):
|
match (plot_view, mode):
|
||||||
case ("avg", "train_table"):
|
|
||||||
_data = (
|
|
||||||
dr.data(metric=metric, estimators=estimators).groupby(level=1).mean()
|
|
||||||
)
|
|
||||||
return pn.pane.DataFrame(_data, align="center") if not _data.empty else None
|
|
||||||
case ("avg", "test_table"):
|
|
||||||
_data = (
|
|
||||||
dr.data(metric=metric, estimators=estimators).groupby(level=0).mean()
|
|
||||||
)
|
|
||||||
return pn.pane.DataFrame(_data, align="center") if not _data.empty else None
|
|
||||||
case ("avg", "shift_table"):
|
|
||||||
_data = (
|
|
||||||
dr.shift_data(metric=metric, estimators=estimators)
|
|
||||||
.groupby(level=0)
|
|
||||||
.mean()
|
|
||||||
)
|
|
||||||
return pn.pane.DataFrame(_data, align="center") if not _data.empty else None
|
|
||||||
case ("avg", "stats_table"):
|
|
||||||
_data = wilcoxon(dr, metric=metric, estimators=estimators)
|
|
||||||
return pn.pane.DataFrame(_data, align="center") if not _data.empty else None
|
|
||||||
case ("avg", _ as plot_mode):
|
case ("avg", _ as plot_mode):
|
||||||
_plot = dr.get_plots(
|
_plot = dr.get_plots(
|
||||||
mode=mode,
|
mode=mode,
|
||||||
|
@ -54,36 +33,6 @@ def create_plots(
|
||||||
conf="panel",
|
conf="panel",
|
||||||
save_fig=False,
|
save_fig=False,
|
||||||
)
|
)
|
||||||
return (
|
|
||||||
pn.pane.Matplotlib(
|
|
||||||
_plot,
|
|
||||||
tight=True,
|
|
||||||
format="png",
|
|
||||||
# sizing_mode="scale_height",
|
|
||||||
sizing_mode=_plot_sizing_mode,
|
|
||||||
# sizing_mode="scale_both",
|
|
||||||
)
|
|
||||||
if _plot is not None
|
|
||||||
else None
|
|
||||||
)
|
|
||||||
case (_, "train_table"):
|
|
||||||
cr = dr.crs[_prevs.index(int(plot_view))]
|
|
||||||
_data = (
|
|
||||||
cr.data(metric=metric, estimators=estimators).groupby(level=0).mean()
|
|
||||||
)
|
|
||||||
return pn.pane.DataFrame(_data, align="center") if not _data.empty else None
|
|
||||||
case (_, "shift_table"):
|
|
||||||
cr = dr.crs[_prevs.index(int(plot_view))]
|
|
||||||
_data = (
|
|
||||||
cr.shift_data(metric=metric, estimators=estimators)
|
|
||||||
.groupby(level=0)
|
|
||||||
.mean()
|
|
||||||
)
|
|
||||||
return pn.pane.DataFrame(_data, align="center") if not _data.empty else None
|
|
||||||
case (_, "stats_table"):
|
|
||||||
cr = dr.crs[_prevs.index(int(plot_view))]
|
|
||||||
_data = wilcoxon(cr, metric=metric, estimators=estimators)
|
|
||||||
return pn.pane.DataFrame(_data, align="center") if not _data.empty else None
|
|
||||||
case (_, _ as plot_mode):
|
case (_, _ as plot_mode):
|
||||||
cr = dr.crs[_prevs.index(int(plot_view))]
|
cr = dr.crs[_prevs.index(int(plot_view))]
|
||||||
_plot = cr.get_plots(
|
_plot = cr.get_plots(
|
||||||
|
@ -93,18 +42,92 @@ def create_plots(
|
||||||
conf="panel",
|
conf="panel",
|
||||||
save_fig=False,
|
save_fig=False,
|
||||||
)
|
)
|
||||||
return (
|
if _plot is None:
|
||||||
pn.pane.Matplotlib(
|
return None
|
||||||
_plot,
|
|
||||||
tight=True,
|
return pn.pane.Matplotlib(
|
||||||
format="png",
|
_plot,
|
||||||
sizing_mode=_plot_sizing_mode,
|
tight=True,
|
||||||
# sizing_mode="scale_height",
|
format="png",
|
||||||
# sizing_mode="scale_both",
|
# sizing_mode="scale_height",
|
||||||
)
|
sizing_mode=_plot_sizing_mode,
|
||||||
if _plot is not None
|
styles=dict(margin="0"),
|
||||||
else None
|
# sizing_mode="scale_both",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def create_table(
|
||||||
|
dr: DatasetReport,
|
||||||
|
mode="delta",
|
||||||
|
metric="acc",
|
||||||
|
estimators=None,
|
||||||
|
plot_view=None,
|
||||||
|
):
|
||||||
|
_prevs = [round(cr.train_prev[1] * 100) for cr in dr.crs]
|
||||||
|
estimators = CE.name[estimators]
|
||||||
|
if mode is None:
|
||||||
|
mode = valid_plot_modes[plot_view][0]
|
||||||
|
match (plot_view, mode):
|
||||||
|
case ("avg", "train_table"):
|
||||||
|
_data = (
|
||||||
|
dr.data(metric=metric, estimators=estimators).groupby(level=1).mean()
|
||||||
)
|
)
|
||||||
|
case ("avg", "test_table"):
|
||||||
|
_data = (
|
||||||
|
dr.data(metric=metric, estimators=estimators).groupby(level=0).mean()
|
||||||
|
)
|
||||||
|
case ("avg", "shift_table"):
|
||||||
|
_data = (
|
||||||
|
dr.shift_data(metric=metric, estimators=estimators)
|
||||||
|
.groupby(level=0)
|
||||||
|
.mean()
|
||||||
|
)
|
||||||
|
case ("avg", "stats_table"):
|
||||||
|
_data = wilcoxon(dr, metric=metric, estimators=estimators)
|
||||||
|
case (_, "train_table"):
|
||||||
|
cr = dr.crs[_prevs.index(int(plot_view))]
|
||||||
|
_data = (
|
||||||
|
cr.data(metric=metric, estimators=estimators).groupby(level=0).mean()
|
||||||
|
)
|
||||||
|
case (_, "shift_table"):
|
||||||
|
cr = dr.crs[_prevs.index(int(plot_view))]
|
||||||
|
_data = (
|
||||||
|
cr.shift_data(metric=metric, estimators=estimators)
|
||||||
|
.groupby(level=0)
|
||||||
|
.mean()
|
||||||
|
)
|
||||||
|
case (_, "stats_table"):
|
||||||
|
cr = dr.crs[_prevs.index(int(plot_view))]
|
||||||
|
_data = wilcoxon(cr, metric=metric, estimators=estimators)
|
||||||
|
|
||||||
|
return (
|
||||||
|
pn.Column(
|
||||||
|
pn.pane.DataFrame(
|
||||||
|
_data,
|
||||||
|
align="center",
|
||||||
|
float_format=lambda v: f"{v:6e}",
|
||||||
|
styles={"font-size-adjust": "0.62"},
|
||||||
|
),
|
||||||
|
sizing_mode="stretch_both",
|
||||||
|
# scroll=True,
|
||||||
|
)
|
||||||
|
if not _data.empty
|
||||||
|
else None
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def create_result(
|
||||||
|
dr: DatasetReport,
|
||||||
|
mode="delta",
|
||||||
|
metric="acc",
|
||||||
|
estimators=None,
|
||||||
|
plot_view=None,
|
||||||
|
):
|
||||||
|
match mode:
|
||||||
|
case m if m.endswith("table"):
|
||||||
|
return create_table(dr, mode, metric, estimators, plot_view)
|
||||||
|
case _:
|
||||||
|
return create_plot(dr, mode, metric, estimators, plot_view)
|
||||||
|
|
||||||
|
|
||||||
def explore_datasets(root: Path | str):
|
def explore_datasets(root: Path | str):
|
||||||
|
|
|
@ -6,7 +6,7 @@ import pandas as pd
|
||||||
import panel as pn
|
import panel as pn
|
||||||
import param
|
import param
|
||||||
|
|
||||||
from qcpanel.util import create_plots, explore_datasets, valid_plot_modes
|
from qcpanel.util import create_result, explore_datasets, valid_plot_modes
|
||||||
from quacc.evaluation.estimators import CE
|
from quacc.evaluation.estimators import CE
|
||||||
from quacc.evaluation.report import DatasetReport
|
from quacc.evaluation.report import DatasetReport
|
||||||
|
|
||||||
|
@ -365,7 +365,7 @@ class QuaccTestViewer(param.Parameterized):
|
||||||
self.plot_pane = __svg
|
self.plot_pane = __svg
|
||||||
else:
|
else:
|
||||||
_dr = self.datasets_[self.dataset]
|
_dr = self.datasets_[self.dataset]
|
||||||
__plot = create_plots(
|
__plot = create_result(
|
||||||
_dr,
|
_dr,
|
||||||
mode=self.mode,
|
mode=self.mode,
|
||||||
metric=self.metric,
|
metric=self.metric,
|
||||||
|
|
Loading…
Reference in New Issue