image-recognition/src/Searcher.py

83 lines
2.7 KiB
Python

import cv2
import numpy as np
import pickle as pickle
import LFUtilities
import ImageRecognitionSettings as settings
#from BEBLIDRescorerDB import BEBLIDRescorerDB
#from BEBLIDRescorerFAISS import BEBLIDRescorerFAISS
from BEBLIDRescorer import BEBLIDRescorer
import SearcherParameters
from FAISSSearchEngine2 import FAISSSearchEngine
import FeatureExtractor as fe
import BEBLIDExtractorQ as lfQ
import BEBLIDExtractorD as lfD
import logging
class Searcher:
def __init__(self):
# self.dataset = h5py.File(settings.dataset_file, 'r')['rmac'][...]
# np.save('/media/Data/data/beni_culturali/deploy/dataset', self.dataset)
self.search_engine = FAISSSearchEngine()
self.rescorer = BEBLIDRescorer()
def get_indexed_ids(self):
return self.search_engine.get_indexed_ids()
def get_id(self, idx):
return self.search_engine.get_id(idx)
def exists(self, doc_id):
return self.search_engine.exists(doc_id)
def add(self, img_file, doc_id):
desc = fe.extract(img_file)
self.search_engine.add(desc, doc_id)
kp, des = lfD.extract(img_file)
self.rescorer.add(doc_id, kp, des)
#orb = lf.extract(img_file)
self.save(True)
logging.info('added ' + doc_id)
def remove(self, doc_id):
self.search_engine.remove(doc_id)
self.rescorer.remove(doc_id)
self.save(True)
logging.info('removed ' + doc_id)
def search_by_id(self, query_id, k=10, search_threshold=0.25, search_deep_level=1):
kq = k
if search_deep_level > 0:
kq = SearcherParameters.SEARCH_DEEP_K[search_deep_level]
res = self.search_engine.search_by_id(query_id, kq)
if search_deep_level > 0:
res_lf = self.rescorer.rescore_by_id(query_id, res)
res = res_lf if res_lf else res[:k]
res = [result for result in res if result[1] >= search_threshold]
return res
def search_by_img(self, query_img, k=10, search_threshold=0.25, search_deep_level=1):
kq = k
if search_deep_level:
kq = SearcherParameters.SEARCH_DEEP_K[search_deep_level]
query_desc = fe.extract(query_img)
res = self.search_engine.search_by_img(query_desc, kq)
if search_deep_level > 0:
query_lf = lfQ.extract(query_img)
res_lf = self.rescorer.rescore_by_img(query_lf, res)
#res = res_lf if res_lf else res[:k]
res = res_lf if res_lf else res[:k]
res = [result for result in res if result[1] >= search_threshold]
return res
def save(self, is_backup=False):
self.search_engine.save(is_backup)
self.rescorer.save(is_backup)