gfun_multimodal/gfun/vgfs/transformerGen.py

118 lines
3.6 KiB
Python

from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
from gfun.vgfs.learners.svms import FeatureSet2Posteriors
class TransformerGen:
"""Base class for all transformers. It implements the basic methods for
the creation of the datasets, datalaoders and the train-val split method.
It is designed to be used with MultilingualDataset in the
form of dictioanries {lang: data}
"""
def __init__(
self,
model_name,
dataset_name,
epochs=10,
lr=1e-5,
batch_size=4,
batch_size_eval=32,
max_length=512,
print_steps=50,
device="cpu",
probabilistic=False,
n_jobs=-1,
evaluate_step=10,
verbose=False,
patience=5,
scheduler=None,
):
self.model_name = model_name
self.dataset_name = dataset_name
self.device = device
self.model = None
self.lr = lr
self.epochs = epochs
self.tokenizer = None
self.max_length = max_length
self.batch_size = batch_size
self.batch_size_eval = batch_size_eval
self.print_steps = print_steps
self.probabilistic = probabilistic
self.n_jobs = n_jobs
self.fitted = False
self.datasets = {}
self.evaluate_step = evaluate_step
self.verbose = verbose
self.patience = patience
self.datasets = {}
self.scheduler = scheduler
self.feature2posterior_projector = (
self.make_probabilistic() if probabilistic else None
)
def make_probabilistic(self):
if self.probabilistic:
feature2posterior_projector = FeatureSet2Posteriors(
n_jobs=self.n_jobs, verbose=False
)
return feature2posterior_projector
def build_dataloader(
self,
lX,
lY,
torchDataset,
processor_fn,
batch_size,
split="train",
shuffle=False,
):
l_processed = {lang: processor_fn(lX[lang]) for lang in lX.keys()}
self.datasets[split] = torchDataset(l_processed, lY, split=split)
return DataLoader(
self.datasets[split],
batch_size=batch_size,
shuffle=shuffle,
# collate_fn=processor_fn,
)
def get_train_val_data(self, lX, lY, split=0.2, seed=42, modality="text"):
assert modality in ["text", "image"], "modality must be either text or image"
tr_lX, tr_lY, val_lX, val_lY = {}, {}, {}, {}
for lang in lX.keys():
tr_X, val_X, tr_Y, val_Y = train_test_split(
lX[lang][modality],
lY[lang],
test_size=split,
random_state=seed,
shuffle=False,
)
tr_lX[lang] = tr_X
tr_lY[lang] = tr_Y
val_lX[lang] = val_X
val_lY[lang] = val_Y
return tr_lX, tr_lY, val_lX, val_lY
def get_config(self):
return {
"model_name": self.model_name,
"dataset_name": self.dataset_name,
"epochs": self.epochs,
"lr": self.lr,
"scheduler": self.scheduler,
"batch_size": self.batch_size,
"batch_size_eval": self.batch_size_eval,
"max_length": self.max_length,
"print_steps": self.print_steps,
"device": self.device,
"probabilistic": self.probabilistic,
"n_jobs": self.n_jobs,
"evaluate_step": self.evaluate_step,
"verbose": self.verbose,
"patience": self.patience,
}