Compare commits

...

12 Commits
rsc ... master

Author SHA1 Message Date
andrea a4f74dcf41 fixed pl early stop --> patience was consumed if actual_monitor == best_monitor. Set policy to greater or equal. 2021-02-11 18:37:34 +01:00
andrea a1c4247e17 fixed common after problematic merge 2021-02-05 11:22:30 +01:00
andrea 1ac850630b Merge branch 'devel' 2021-02-05 11:07:40 +01:00
andrea b6d22cea99 removed unused module "lstm_class.py" 2021-02-05 11:05:24 +01:00
andrea 59146f0dda fixed typos + n_jobs across code (still missing one wrt brach 'rsc') 2021-02-04 16:52:05 +01:00
andrea ec050dce7b typos 2021-02-03 12:30:44 +01:00
andrea e78b1f8a30 merged devel 2021-02-03 11:20:08 +01:00
andrea 1bff57ebbb Fixed arguments 2021-02-02 11:26:04 +01:00
andrea b98821d3ff running comparison with refactor branch 2021-01-29 14:56:20 +01:00
andrea 5405f60bd0 running comparison with refactor branch 2021-01-29 14:50:34 +01:00
andrea 66952820f9 running comparison with refactor branch 2021-01-29 12:30:31 +01:00
andrea 091101b39d running comparison with refactor branch 2021-01-29 11:37:42 +01:00
4 changed files with 16 additions and 120 deletions

12
main.py
View File

@ -49,16 +49,16 @@ def main(args):
if args.bert_embedder:
bertEmbedder = BertGen(multilingualIndex, batch_size=args.batch_bert, nepochs=args.nepochs_bert,
patience=args.patience_bert, gpus=args.gpus, n_jobs=args.n_jobs)
bertEmbedder.transform(lX)
embedder_list.append(bertEmbedder)
# Init DocEmbedderList (i.e., first-tier learners or view generators) and metaclassifier
docEmbedders = DocEmbedderList(embedder_list=embedder_list, probabilistic=True)
meta = MetaClassifier(meta_learner=get_learner(calibrate=False, kernel='rbf'),
meta_parameters=get_params(optimc=args.optimc))
meta_parameters=get_params(optimc=args.optimc),
n_jobs=args.n_jobs)
# Init Funnelling Architecture
gfun = Funnelling(first_tier=docEmbedders, meta_classifier=meta)
gfun = Funnelling(first_tier=docEmbedders, meta_classifier=meta, n_jobs=args.n_jobs)
# Training ---------------------------------------
print('\n[Training Generalized Funnelling]')
@ -71,7 +71,7 @@ def main(args):
print('\n[Testing Generalized Funnelling]')
time_te = time.time()
ly_ = gfun.predict(lXte)
l_eval = evaluate(ly_true=lyte, ly_pred=ly_)
l_eval = evaluate(ly_true=lyte, ly_pred=ly_, n_jobs=args.n_jobs)
time_te = round(time.time() - time_te, 3)
print(f'Testing completed in {time_te} seconds!')
@ -112,8 +112,8 @@ if __name__ == '__main__':
parser.add_argument('dataset', help='Path to the dataset')
parser.add_argument('-o', '--output', dest='csv_dir', metavar='',
help='Result file (default ../csv_logs/gfun/gfun_results.csv)', type=str,
default='../csv_logs/gfun/gfun_results.csv')
help='Result file (default csv_logs/gfun/gfun_results.csv)', type=str,
default='csv_logs/gfun/gfun_results.csv')
parser.add_argument('-x', '--post_embedder', dest='post_embedder', action='store_true',
help='deploy posterior probabilities embedder to compute document embeddings',

View File

@ -1,112 +0,0 @@
#taken from https://github.com/prakashpandey9/Text-Classification-Pytorch/blob/master/models/LSTM.py
from models.helpers import *
from torch.autograd import Variable
class RNNMultilingualClassifier(nn.Module):
def __init__(self, output_size, hidden_size, lvocab_size, learnable_length, lpretrained=None,
drop_embedding_range=None, drop_embedding_prop=0, post_probabilities=True, only_post=False,
bert_embeddings=False):
super(RNNMultilingualClassifier, self).__init__()
self.output_size = output_size
self.hidden_size = hidden_size
self.drop_embedding_range = drop_embedding_range
self.drop_embedding_prop = drop_embedding_prop
self.post_probabilities = post_probabilities
self.bert_embeddings = bert_embeddings
assert 0 <= drop_embedding_prop <= 1, 'drop_embedding_prop: wrong range'
self.lpretrained_embeddings = nn.ModuleDict()
self.llearnable_embeddings = nn.ModuleDict()
self.embedding_length = None
self.langs = sorted(lvocab_size.keys())
self.only_post = only_post
self.n_layers = 1
self.n_directions = 1
self.dropout = nn.Dropout(0.6)
lstm_out = 256
ff1 = 512
ff2 = 256
lpretrained_embeddings = {}
llearnable_embeddings = {}
if only_post==False:
for l in self.langs:
pretrained = lpretrained[l] if lpretrained else None
pretrained_embeddings, learnable_embeddings, embedding_length = init_embeddings(
pretrained, lvocab_size[l], learnable_length
)
lpretrained_embeddings[l] = pretrained_embeddings
llearnable_embeddings[l] = learnable_embeddings
self.embedding_length = embedding_length
# self.lstm = nn.LSTM(self.embedding_length, hidden_size, dropout=0.2 if self.n_layers>1 else 0, num_layers=self.n_layers, bidirectional=(self.n_directions==2))
self.rnn = nn.GRU(self.embedding_length, hidden_size)
self.linear0 = nn.Linear(hidden_size * self.n_directions, lstm_out)
self.lpretrained_embeddings.update(lpretrained_embeddings)
self.llearnable_embeddings.update(llearnable_embeddings)
self.linear1 = nn.Linear(lstm_out, ff1)
self.linear2 = nn.Linear(ff1, ff2)
if only_post:
self.label = nn.Linear(output_size, output_size)
elif post_probabilities and not bert_embeddings:
self.label = nn.Linear(ff2 + output_size, output_size)
elif bert_embeddings and not post_probabilities:
self.label = nn.Linear(ff2 + 768, output_size)
elif post_probabilities and bert_embeddings:
self.label = nn.Linear(ff2 + output_size + 768, output_size)
else:
self.label = nn.Linear(ff2, output_size)
def forward(self, input, post, bert_embed, lang):
if self.only_post:
doc_embedding = post
else:
doc_embedding = self.transform(input, lang)
if self.post_probabilities:
doc_embedding = torch.cat([doc_embedding, post], dim=1)
if self.bert_embeddings:
doc_embedding = torch.cat([doc_embedding, bert_embed], dim=1)
logits = self.label(doc_embedding)
return logits
def transform(self, input, lang):
batch_size = input.shape[0]
input = embed(self, input, lang)
input = embedding_dropout(input, drop_range=self.drop_embedding_range, p_drop=self.drop_embedding_prop,
training=self.training)
input = input.permute(1, 0, 2)
h_0 = Variable(torch.zeros(self.n_layers*self.n_directions, batch_size, self.hidden_size).cuda())
# c_0 = Variable(torch.zeros(self.n_layers*self.n_directions, batch_size, self.hidden_size).cuda())
# output, (_, _) = self.lstm(input, (h_0, c_0))
output, _ = self.rnn(input, h_0)
output = output[-1, :, :]
output = F.relu(self.linear0(output))
output = self.dropout(F.relu(self.linear1(output)))
output = self.dropout(F.relu(self.linear2(output)))
return output
def finetune_pretrained(self):
for l in self.langs:
self.lpretrained_embeddings[l].requires_grad = True
self.lpretrained_embeddings[l].weight.requires_grad = True
def get_embeddings(self, input, lang):
batch_size = input.shape[0]
input = embed(self, input, lang)
input = embedding_dropout(input, drop_range=self.drop_embedding_range, p_drop=self.drop_embedding_prop,
training=self.training)
input = input.permute(1, 0, 2)
h_0 = Variable(torch.zeros(self.n_layers * self.n_directions, batch_size, self.hidden_size).cuda())
output, _ = self.rnn(input, h_0)
output = output[-1, :, :]
return output.cpu().detach().numpy()

View File

@ -378,7 +378,7 @@ def get_method_name(args):
for i, conf in enumerate(_id_conf):
if conf:
_id += _id_name[i]
_id = _id if not args.gru_wce else _id + '_wce'
_id = _id if not args.rnn_wce else _id + '_wce'
_dataset_path = args.dataset.split('/')[-1].split('_')
dataset_id = _dataset_path[0] + _dataset_path[-1]
return _id, dataset_id

View File

@ -18,6 +18,7 @@ This module contains the view generators that take care of computing the view sp
from abc import ABC, abstractmethod
# from time import time
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
@ -241,6 +242,10 @@ class RecurrentGen(ViewGen):
self.logger = TensorBoardLogger(save_dir='../tb_logs', name='rnn', default_hp_metric=False)
self.early_stop_callback = EarlyStopping(monitor='val-macroF1', min_delta=0.00,
patience=self.patience, verbose=False, mode='max')
# modifying EarlyStopping global var in order to compute >= with respect to the best score
self.early_stop_callback.mode_dict['max'] = torch.ge
self.lr_monitor = LearningRateMonitor(logging_interval='epoch')
def _init_model(self):
@ -348,6 +353,9 @@ class BertGen(ViewGen):
self.early_stop_callback = EarlyStopping(monitor='val-macroF1', min_delta=0.00,
patience=self.patience, verbose=False, mode='max')
# modifying EarlyStopping global var in order to compute >= with respect to the best score
self.early_stop_callback.mode_dict['max'] = torch.ge
def _init_model(self):
output_size = self.multilingualIndex.get_target_dim()
return BertModel(output_size=output_size, stored_path=self.stored_path, gpus=self.gpus)
@ -361,7 +369,7 @@ class BertGen(ViewGen):
:param ly: dict {lang: target vectors}
:return: self.
"""
print('# Fitting BertGen (M)...')
print('# Fitting BertGen (B)...')
create_if_not_exist(self.logger.save_dir)
self.multilingualIndex.train_val_split(val_prop=0.2, max_val=2000, seed=1)
bertDataModule = BertDataModule(self.multilingualIndex, batchsize=self.batch_size, max_len=512)